G(A)PW Electronic Structure Theory

Thomas D. Kühne Chair of Theoretical Chemistry Dynamics of Condensed Matter

CP2K: The Swiss Army Knife of Molecular Simulations

- Static Calculations Energy & Structure Optimization Properties: NMR, EPR & XAS
- Sampling Techniques MC & MD Ehrenfest Dynamics Accelerated FES: Metadynamics
- Energy & Force Methods
 Quickstep: PP-DFT (GPW)
 Semiempirical QC & TB Methods
 Classical Molecular Mechanics
 Embedding Methods (QM/MM)

CP2K: The Swiss Army Knife of Molecular Simulations

http://www.cp2k.org

- Static Calculations Energy & Structure Optimization Properties: NMR, EPR & XAS
- Sampling Techniques MC & MD Ehrenfest Dynamics Accelerated FES: Metadynamics
- Energy & Force Methods
 Quickstep: PP-DFT (GPW)
 Semiempirical QC & TB Methods
 Classical Molecular Mechanics
 Embedding Methods (QM/MM)

Outline

Sensity Functional Theory and the KS formalism ☆ Gaussian and Plane Wave method (GPW) **Basis sets and pseudo potentials Security of Caussian Augmented Plane Wave method (GAPW)** ※ Orbital Transformations (OT) Diagonalisation and Mixing **Metals**

Density Functional Theory

Why DFT?

Section Section Secti

Predicable accuracy (unlike empirical approaches, parameter free)

Knowledge of electronic structure gives access to evaluation of many observables

Better scaling compared to many quantum chemistry approaches

***** Achievable improvements: development of algorithms and functionals

large systems, condensed matter, environment effects, first principle MD

Hohenberg-Kohn Theorems

Theorem I

Siven a potential, one obtains the wave functions via Schrödinger equation

$$V_{\text{ext}}(\mathbf{r}, \mathbf{R}) \Rightarrow H(\mathbf{r}, \mathbf{R}) = T(\mathbf{r}) + V_{\text{ext}}(\mathbf{r}, \mathbf{R}) + V_{\text{ee}}(\mathbf{r})$$

$$H(\mathbf{r}, \mathbf{R})\Psi(\mathbf{r}, \mathbf{R}) = E(\mathbf{R})\Psi(\mathbf{r}, \mathbf{R})$$

The density is the probability distribution of the wave functions

$$n(\mathbf{r}) \Leftrightarrow V_{\text{ext}}(\mathbf{r}, \mathbf{R})$$

the potential and hence also the total energy are unique functional of the electronic density n(r)

Hohenberg-Kohn Total Energy

Theorem II: The total energy is variational

 $E[n] \ge E[n_{\rm GS}]$

 $E_{\rm tot}[n] = E_{\rm kin}[n] + E_{\rm ext}[n] + E_{\rm H}[n] + E_{\rm xc}[n]$

Ekin QM kinetic energy of electron (TF)
Eext energy due to external potential
E_H classical Hartree repulsion
E_{xc} non classical Coulomb energy: el. correlation

Kohn-Sham Energy Functional

Electronic density

$$n(\mathbf{r}) = \sum_{i} f_{i} \left| \psi_{i}(\mathbf{r}) \right|^{2}$$

no repulsion

Kinetic energy of non interacting electrons

$$T_{\rm s}[n] = \sum_{i} f_i \left\langle \psi_i(\mathbf{r}) | -\frac{1}{2} \nabla^2 | \psi_i(\mathbf{r}) \right\rangle$$

Electronic interaction with the external potential

$$E_{\text{ext}}[n] = \int_{r} n(\mathbf{r}) V_{\text{ext}}(\mathbf{r}) d\mathbf{r} \qquad V_{\text{ext}}(\mathbf{r}) = \sum_{I} -\frac{Z_{I}}{|\mathbf{r} - \mathbf{R}_{I}|}$$

$$\Psi_s = \frac{1}{\sqrt{N!}} \det \left[\psi_1 \psi_2 \psi_3 \dots \psi_N \right]$$

Exact solution

Kohn-Sham Energy Functional

Classical e-e repulsion

$$J[n] = \frac{1}{2} \int_{\mathbf{r}} \int_{\mathbf{r}'} \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' = \frac{1}{2} \int_{\mathbf{r}} n(\mathbf{r}) V_{\mathrm{H}}(\mathbf{r}) d\mathbf{r}$$

Kohn-Sham functional

$$E_{\rm KS}[n] = T_{\rm s}[n] + E_{\rm ext}[n] + J[n] + E_{\rm XC}[n]$$
$$E_{\rm XC}[n] = E_{\rm kin}[n] - T_{\rm s}[n] + E_{ee}[n] - J[n]$$

non-classical part

Kohn-Sham Equations

Orthonormality constraint

$$\Omega_{\rm KS}[\psi_i] = E_{\rm KS}[n] - \sum_{ij} \epsilon_{ij} \int \psi_i^*(\mathbf{r}) \psi_j(\mathbf{r}) d\mathbf{r}$$
Lagrange multipliers

Variational search in the space of orbitals

$$\frac{\delta\Omega_{\rm KS}[\psi_i]}{\delta\psi_i^*} = 0$$

$$H_{\rm KS}\psi_i = \left[-\frac{1}{2}\nabla^2 + V_{\rm KS}\right]\psi_i = \sum_{ij}\epsilon_{ij}\psi_j$$

$$V_{\rm KS}(\mathbf{r}) = V_{\rm ext}(\mathbf{r}) + V_{\rm H}(\mathbf{r}) + V_{\rm XC}(\mathbf{r})$$

Kohn-Sham Equations

ϵ_{ij} diagonal

$$\left[-\frac{1}{2}\nabla^2 + V_{\rm KS}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$$

 \bigotimes KS equations looking like Schrödinger equations \bigotimes coupled and highly non linear \bigotimes Self consistent solution required \bigotimes e and ψ are help variables \bigotimes KS scheme in principle exact (Exc?)

Self-Consistency

until self-consistency to required precision

Local Density Approximation

Uniform electron gas

$$E_{\rm xc}^{\rm LDA}[n] = \int n(\mathbf{r})\varepsilon_{\rm xc}(n)d\mathbf{r}$$

$$V_{\rm xc}^{\rm LDA}(\mathbf{r}) = \frac{\delta E_{\rm xc}^{\rm LDA}[n]}{\delta n(\mathbf{r})} = \varepsilon_{\rm xc}(n(\mathbf{r})) + n(\mathbf{r})\frac{\partial \varepsilon_{\rm xc}(n)}{\partial n}$$

Two contributions

$$\varepsilon_{\rm xc}(n) = \varepsilon_{\rm x}(n) + \varepsilon_{\rm c}(n)$$

QMC interpolation (Ceperly-Alder)

Applicable with slow-varying densities

Generalized Gradient Approx.

Gradient expansion

$$E_{\rm xc}^{\rm GGA}[n] = \int n(\mathbf{r})\varepsilon_{\rm xc}(n)F_{\rm xc}\left[n,\nabla n,\nabla^2 n,\ldots\right]d\mathbf{r}$$

GGA derivation

% Explicit form not known

Theoretical approach: by fulfilling formal conditions as sum rules, long range decay, scaling rules, high/low density limits, etc.

Fit parameters to experimental results (mol. database)

CP2K Overview

Fortran95, 1'000'000 lines of code, rapid development

Freely available, open source, GNU General Public License

Community Developers Platform (UZH, IBM Research, ETHZ, PNL, LLNL, PSI, U Bochum, EPCC UK,)

Wer community through Google groups

MPI and OpenMP parallelisation, CUDA C extensions : porting on >100'000 cores and to GPUs

We Quality control: automatic regression and memory leak (>2000)

影 Force Methods: KS/OF DFT (vdw), Hybrid, MP2, RPA, Classical Force Fields, QM/MM, DFTB, semi-empirical, mixed

Sampling Methods: GeoOpt, CellOpt, Molecular Dynamics, Ehrenfest MD, FES and PES tools (Metadynamics), Monte Carlo, PIMD

Properties and spectroscopy (vibrational, IR, TDDFT, NMR, EPR, NEXAFS, Raman...)

External Library: Lapack/BLAS, ScaLapack/BLACS, MPI, OpenMP, FFTW, libint, libxc, ELPA

Internal library for handling sparse matrices (DBCSR)

Basis Set Representation

Kohn-Sham formalism: matrix formulation when the wavefunction is expanded into a basis

System size {N_{el}, M}, P [MxM], C [MxN]

$$\psi_{i}(\mathbf{r}) = \sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r})$$
$$n(\mathbf{r}) = \sum_{i} \sum_{\alpha \beta} f_{i} C_{\alpha i} C_{\beta i} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r}) = \sum_{\alpha \beta} P_{\alpha \beta} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r})$$

$$\mathbf{P} = \mathbf{PSP}$$

Density functional

Variational principle Constrained minimization problem

$$E[\{\psi_i\}] = T[\{\psi_i\}] + E^{\text{ext}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n] + E^{II}$$

Matrix equation

$$\mathbf{K}(C)\mathbf{C} = \mathbf{T}(C) + \mathbf{V}_{\text{ext}}(C) + \mathbf{E}^{\text{H}}(C) + \mathbf{E}^{\text{xc}}(C) = \mathbf{SC}\varepsilon$$

Critical-Tasks

- **%** Construction of the Kohn-Sham matrix
 - Coulomb potential
 - XC potential
 - HF/exact exchange

Fast and robust minimization of the energy functional

Efficient calculation of the density matrix and construction of the MOs (C)

O(N) scaling in basis set size

Big systems: biomolecules, interfaces, material science 1000+ atoms

Long time scale: 1 ps = 1000 MD steps, processes several ps a day

Number of Atoms

☆ Gaussian basis sets

Plane waves auxiliary basis for Coulomb integrals

℅ Regular grids and FFT

Sparse matrices, efficient screening, linear scaling KS matrix computation

Fast/robust direct wavefunction optimizer (OT)

Classes of Basis Sets

Extended basis sets, **PW** : condensed matter

Events and the set of the set of

Idea of GPW: auxiliary basis set to represent the density

Mixed (GTO+PW) to take best of two worlds, GPW

Magnented basis set, GAPW: separated hard and soft density domains

Gaussian Basis Sets

- good results already for small basis sets
- correspondence to the intuitive chemical picture
- all-electron description
- can be tuned for each application (and even each atom)
- no implicit periodicity
- on non-orthogonal
- depend on the atomic positions (Pulay forces)
- basis set superposition error (BSSE)
- systematic improvement is less straightforward
- over-completeness causes linear dependencies

Plane Waves Basis Sets

orthogonal

- independent of the atomic positions (no Pulay forces)
- no basis set superposition error (BSSE)
- systematic improvement simply by increasing the cutoff
- implicit periodicity
- no selective tuning possible
- Iarge number of basis functions is needed
- pseudo potentials are needed
- chemical information not directly accessible

GPW Ingredients

linear scaling KS matrix computation for GTO

% Gaussian basis sets (many terms analytic)

$$\psi_i(\mathbf{r}) = \sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \qquad \phi_{\alpha}(\mathbf{r}) = \sum_m d_{m\alpha} g_m(\mathbf{r}) \qquad g_m(\mathbf{r}) = x^{m_x} y^{m_y} z^{m_z} e^{-\alpha_m r^2}$$

% Pseudo potentials

Plane waves auxiliary basis for Coulomb integrals

Regular grids and FFT for the density

☆ Sparse matrices (KS and P)

% Efficient screening

G. Lippert et al, Molecular Physics, 92, 477, 1997

Gaussian Basis Set

% Localised, atom-position dependent GTO basis

$$\varphi_{\mu}(\mathbf{r}) = \sum_{m} d_{m\mu} g_{m}(\mathbf{r})$$

***** Expansion of the density using the density matrix

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}^{*}(\mathbf{r})$$

Operator matrices are sparse

$$S_{\alpha\beta} = \int \varphi_{\alpha}(r) \varphi_{\beta}(r) dr$$

$$H_{\alpha\beta}^{\beta} \mu \sqrt{\overline{\varphi}_{\alpha}}(r) \varphi_{\mu}(\mathbf{r}) \varphi_{\beta}(\mathbf{r}) d\mathbf{r}$$

$$H_{\alpha\beta}^{\beta} \mu \sqrt{\overline{\varphi}_{\alpha}}(r) \varphi_{\mu}(\mathbf{r}) V(r) \varphi_{\nu}(\mathbf{r}) d\mathbf{r}$$

$$H_{\mu\nu} = \int \varphi_{\mu}(\mathbf{r}) V(r) \varphi_{\nu}(\mathbf{r}) d\mathbf{r}$$

$$G_{\alpha}(r) = \int g_{\alpha\beta}(r) g_{\alpha$$

Analytic Integrals

Cartesian Gaussian

$$g(\mathbf{r}, \mathbf{n}, \eta, \mathbf{R}) = (x - R_x)^{n_x} (y - R_y)^{n_y} (z - R_z)^{n_z} e^{-\eta (\mathbf{r} - \mathbf{R})^2}$$

$$l = n_x + n_y + n_z$$
 $(l+1)(l+2)/2$

Differential relations

$$\frac{\partial}{\partial R_i}|\mathbf{n}\rangle = 2\eta|\mathbf{n} + \mathbf{1}_i\rangle - n_i|\mathbf{n} - \mathbf{1}_i\rangle \qquad \qquad \frac{\partial}{\partial R_i}|\mathbf{n}\rangle = -\frac{\partial}{\partial r_i}|\mathbf{n}\rangle$$

Obara-Saika recursion relations

$$(\mathbf{0}_a | \mathcal{O}(\mathbf{r}) | \mathbf{0}_b)$$
 $(\mathbf{a} + \mathbf{1}_i | \mathcal{O}(\mathbf{r}) | \mathbf{b})$

Obara and Saika JCP 84 (1986), 3963

O-S Recursion Relations

Invariance of integrals

$$\frac{\partial}{\partial r_i}(\mathbf{a}|\mathcal{O}(r)|\mathbf{b}) = 0$$

Shift of angular momentum

$$(\mathbf{a}|\mathcal{O}(r)|\mathbf{b}+\mathbf{1}_i) = (\mathbf{a}+\mathbf{1}_i|\mathcal{O}(r)|\mathbf{b}) + (A_i - B_i)(\mathbf{a}|\mathcal{O}(r)|\mathbf{b})$$

Overlap

$$(\mathbf{0}_a | \mathbf{0}_b) = \left(\frac{\pi}{\alpha + \beta}\right)^{3/2} \exp[-\xi(\mathbf{A} - \mathbf{B})^2] \qquad \xi = \frac{\alpha\beta}{\alpha + \beta}$$

$$(\mathbf{a} + \mathbf{1}_i | \mathbf{b}) = (P_i - A_i) (\mathbf{a} | \mathbf{b}) + \frac{1}{2(\alpha + \beta)} [n_{ia} (\mathbf{a} - \mathbf{1}_i | \mathbf{b}) + n_{ib} (\mathbf{a} | \mathbf{b} - \mathbf{1}_i)]$$
$$\mathbf{P} = \frac{\alpha \mathbf{A} + \beta \mathbf{B}}{\alpha + \beta}$$

Generate GTO Basis Set

∿ATOM FI EMENT Ru RUN TYPE BASIS OPTIMIZATION ELECTRON CONFIGURATION CORE 4d7 5s1 CORE [Kr] MAX ANGULAR MOMENTUM 2 &**METHOD** METHOD TYPE KOHN-SHAM &XC **&XC FUNCTIONAL** &PBF &END &END XC FUNCTIONAL &END XC &END **METHOD &OPTIMIZATION** EPS SCF 1.e-8 **&END OPTIMIZATION &PP BASIS** NUM GTO 666 S EXPONENTS 3.73260 1.83419 0.80906 0.34515 0.13836 0.04967 P EXPONENTS 3.73260 1.83419 0.80906 0.34515 0.13836 0.04967 D EXPONENTS 3.73260 1.83419 0.80906 0.34515 0.13836 0.04967 EPS EIGENVALUE 1.E-14 &END PP BASIS

```
&POTENTIAL
    PSEUDO TYPE GTH
   &GTH POTENTIAL
   1 0 7
   0.61211332 1 5.04489332
   3
   0.6421504 2 4.625563 -1.8033490
                         2.32811359
   0.6793665 2 3.233952 -2.42101064
                         2.86457842
   0.3805972 2 -15.5316 13.58045054
                        -15.39878349
   &END GTH_POTENTIAL
   CONFINEMENT 0.5 20.00 4.5
 &END POTENTIAL
 &POWELL
    ACCURACY 1.e-8
    STEP SIZE 1.0
 &END POWELL
&END ATOM
```

GTO Basis Sets in CP2K

The repository contains several GTO libraries

cp2k/data/ ALL_BASIS_SETS ALL_POTENTIALS BASIS_ADMM BASIS_ADMM_MOLOPT BASIS_MOLOPT BASIS_RI_cc-TZ

BASIS_SET BASIS_ZIJLSTRA DFTB EMSL_BASIS_SETS GTH_BASIS_SETS GTH_POTENTIALS

HFX_BASIS HF_POTENTIALS MM_POTENTIAL NLCC_POTENTIALS POTENTIAL README dftd3.dat nm12_parameters.xml rVV10_kernel_table.dat t_c_g.dat t_sh_p_s_c.dat vdW_kernel_table.dat

Tools for the optimisation of GTO basis sets are available in cp2k, based on atomic and molecular electronic structure calculations

Basis Set Library

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

O SZV-GTH					
1					
2 0 1 4 1 1					
8.3043855492 0.1510165999	-0.0995679273				
2.4579484191 -0.0393195364	-0.3011422449				
0.7597373434 -0.6971724029	-0.4750857083				
0.2136388632 -0.3841133622	-0.3798777957				
#					
O DZVP-GTH					
2					
2 0 1 4 2 2					
8.3043855492 0.1510165999	0.0000000000	-0.0995679273	0.0000000000		
2.4579484191 -0.0393195364	0.0000000000	-0.3011422449	0.0000000000		
0.7597373434 -0.6971724029	0.0000000000	-0.4750857083	0.0000000000		
0.2136388632 -0.3841133622	1.0000000000	-0.3798777957	1.0000000000		
3 2 2 1 1					
1.185000000 1.000000000					
#					
O TZVP-GTH					
2					
2 0 1 5 3 3					
10.2674419938 0.0989598460	0.0000000000	0.0000000000	-0.0595856940	0.0000000000	0.0000000000
3.7480495696 0.1041178339	0.0000000000	0.0000000000	-0.1875649045	0.0000000000	0.0000000000
1.3308337704 -0.3808255700	0.0000000000	0.0000000000	-0.3700707718	0.0000000000	0.0000000000
0.4556802254 -0.6232449802	1.0000000000	0.0000000000	-0.4204922615	1.0000000000	0.0000000000
0.1462920596 -0.1677863491	0.0000000000	1.0000000000	-0.2313901687	0.0000000000	1.000000000
3 2 2 1 1					
1.185000000 1.000000000					

Basis Set Library

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

O SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q6

1

201711

12.015954705512 -0.060190841200 0.036543638800 5.108150287385 -0.129597923300 0.120927648700 2.048398039874 0.118175889400 0.251093670300 0.832381575582 0.462964485000 0.352639910300 0.352316246455 0.450353782600 0.294708645200 0.142977330880 0.092715833600 0.173039869300 0.046760918300 -0.000255945800 0.009726110600

#

O DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q6

1

 $2\ 0\ 2\ 7\ 2\ 2\ 1$

#

O TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q6

1

 $2\ 0\ 2\ 7\ 3\ 3\ 1$

12.015954705512 -0.060190841200 0.065738617900 0.041006765400 0.036543638800 -0.034210557400 -0.000592640200 0.014807054400 5.108150287385 -0.129597923300 0.110885902200 0.080644802300 0.120927648700 -0.120619770900 0.009852349400 0.068186159300 2.048398039874 0.118175889400 -0.053732406400 -0.067639801700 0.251093670300 -0.213719464600 0.001286509800 0.290576499200 0.832381575582 0.462964485000 -0.572670666200 -0.435078312800 0.352639910300 -0.473674858400 -0.021872639500 1.063344189500 0.352316246455 0.450353782600 0.186760006700 0.722792798300 0.294708645200 0.484848376400 0.530504764700 0.307656114200 0.142977330880 0.092715833600 0.387201458600 -0.521378340700 0.173039869300 0.717465919700 -0.436184043700 0.318346834400 0.046760918300 -0.000255945800 0.003825849600 0.175643142900 0.009726110600 0.032498979400 0.073329259500 -0.005771736600

Basis Set Library

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

0 0-310X 0-310*		
4		
10061		
5484.67170000	0.00183110	
825.23495000	0.01395010	
188.04696000	0.06844510	
52.96450000	0.23271430	
16.89757000	0.47019300	
5.79963530	0.35852090	
101311		
15.53961600	-0.11077750	0.07087430
3.59993360	-0.14802630	0.33975280
1.01376180	1.13076700	0.72715860
101111		
0.27000580	1.00000000	1.00000000
1 2 2 1 1		
0.80000000	1.00000000	
#		
O 6-31Gxx 6-31G**	<	
4		
10061		
5484.67170000	0.00183110	
825.23495000	0.01395010	
188.04696000	0.06844510	
52.96450000	0.23271430	
16.89757000	0.47019300	
5.79963530	0.35852090	
1 0 1 3 1 1		
15.53961600	-0.11077750	0.07087430
3.59993360	-0.14802630	0.33975280
1.01376180	1.13076700	0.72715860
$1 \ 0 \ 1 \ 1 \ 1 \ 1$		

1.00000000

1.00000000

0 ()10 ()10*

0.27000580

O 6-311++G3df3pd	6-311++G(3df,	3pd)
9		
1 0 0 6 1		
8588.5000000	0.00189515	
1297.23000000	0.01438590	
299.29600000	0.07073200	
87.37710000	0.24000100	
25.67890000	0.59479700	
3.74004000	0.28080200	
101311		
42.11750000	0.11388900	0.03651140
9.62837000	0.92081100	0.23715300
2.85332000	-0.00327447	0.81970200
101111		
0.90566100	1.00000000	1.00000000
101111		
0.25561100	1.00000000	1.00000000
1 2 2 1 1		
5.16000000	1.00000000	
1 2 2 1 1		
1.29200000	1.00000000	
1 2 2 1 1		
0.32250000	1.00000000	
1 3 3 1 1		
1.40000000	1.00000000	
1 0 1 1 1 1 1		
0.08450000	1.00000000	1.00000000

Basis Set Superposition Error

BSSE in liquid water

Binding energy in water (BSSE)

Pseudopotentials

 r_c

pseudo

 \gg Core electrons are eliminated $Z_V=Z-Z_{core}$

Atomic 1s : exp{-Z r}

Smooth nodeless pseudo-wfn close to nuclei

Bare Coulomb replaced by screened Coulomb

****** Transferable

Magular dependent potentials:

Pt p peaked at 3.9Å s peaked at 2.4Å d peaked at 1.3Å

Generate Pseudopotentials

Reference

$$\left(-\frac{1}{2}\nabla^2 + V_{\rm H}[n](r) + V_{\rm xc}[n](r) + V_{\rm nuc}(r)\right)\psi_l(\mathbf{r}) = \epsilon_l\psi_l(\mathbf{r})$$

PP

$$\left(-\frac{1}{2}\nabla^2 + V_{\rm H}[n_{\rm val}](r) + V_{\rm xc}[n_{\rm val}](r) + V_{\rm pp}^l(r)\right)\tilde{\psi}_l(\mathbf{r}) = \epsilon_l\tilde{\psi}_l(\mathbf{r})$$

Normconserving

$$\int \left| \tilde{\psi}_l(\mathbf{r}) \right|^2 d\mathbf{r} = 1$$

Separable: local, nonlocal

$$V_{\rm pp}(\mathbf{r}) = V_{\rm loc}(|\mathbf{r}|) + \sum_{lm}^{L_{\rm max}} |p_{lm}\rangle \nu_l \langle p_{lm}|$$

GTH Pseudopotentials

% Norm-conserving, separable, dual-space

% Local PP : short-range and long-range terms

$$V_{\text{loc}}^{\text{PP}}(r) = \sum_{i=1}^{4} C_i^{\text{PP}} \left(\sqrt{(2)} \alpha^{\text{PP}} r \right)^{(2i-2)} e^{-\left(\alpha^{\text{PP}} r\right)^2} - \frac{Z_{\text{ion}}}{r} \text{erf}\left(\alpha^{\text{PP}} r\right)$$
analytically
part of ES

Non-Local PP with Gaussian type projectors

$$V_{\rm nl}^{\rm PP}(\mathbf{r},\mathbf{r}') = \sum_{lm} \sum_{ij} \langle \mathbf{r} | p_i^{lm} \rangle h_{ij}^l \langle p_j^{lm} | \mathbf{r}' \rangle$$

$$\left\langle \mathbf{r} \mid p_i^{lm} \right\rangle = N_i^l Y^{lm}(\hat{r}) r^{(l+2i-2)} e^{-\frac{1}{2} \left(\frac{r}{r_l}\right)^2}$$

Goedeker, Teter, Hutter, PRB **54** (1996), 1703; Hartwigsen, Goedeker, Hutter, PRB **58** (1998) 3641 Accurate and Transferable Scalar relativistic

Few parameters

Pseudopotential Integrals

Local PP (SR): 3-center terms

$$(\mathbf{a} + \mathbf{1}_{i} | \mathbf{c} | \mathbf{b}) = H_{i}(\mathbf{a} | \mathbf{c} | \mathbf{b}) + \frac{1}{2(\alpha + \beta + \gamma)} [n_{ia}(\mathbf{a} - \mathbf{1}_{i} | \mathbf{c} | \mathbf{b}) + n_{ib}(\mathbf{a} | \mathbf{c} | \mathbf{b} - \mathbf{1}_{i}) + n_{ic} [(\mathbf{a} + \mathbf{1}_{i} | \mathbf{c} - \mathbf{2}_{i} | \mathbf{b}) + (A_{i} - C_{i})(\mathbf{a} | \mathbf{c} - \mathbf{2}_{i} | \mathbf{b})]]$$

$$\mathbf{H} = \frac{\beta \mathbf{B} + \gamma \mathbf{C} - (\beta + \gamma) \mathbf{A}}{\alpha + \beta + \gamma}$$

$$(\mathbf{0}_a | \mathbf{0}_c | \mathbf{0}_b) = \left(\frac{\alpha + \beta}{\alpha + \beta + \gamma}\right)^{3/2} \exp\left[-\gamma \frac{\alpha + \beta}{\alpha + \beta + \gamma} (\mathbf{P} - \mathbf{C})^2\right] (\mathbf{a} | \mathbf{b})$$

GTH PP Generation for O

&ATOM

FIFMENT 0 RUN TYPE **PSEUDOPOTENTIAL OPTIMIZATION** ELECTRON CONFIGURATION [He] 2s2 2p4 CORE [He] MAX ANGULAR MOMENTUM 2 COULOMB INTEGRALS ANALYTIC EXCHANGE INTEGRALS ANALYTIC **&METHOD** METHOD TYPE KOHN-SHAM RELATIVISTIC DKH(2) &XC **&XC FUNCTIONAL PBE0** &END XC FUNCTIONAL &END XC &END **METHOD &OPTIMIZATION** EPS SCF 1.e-10 &END **&PRINT &BASIS SET** &END **&END**

```
&AE BASIS
   BASIS TYPE GEOMETRICAL GTO
&END AE BASIS
&PP BASIS
   BASIS TYPE GEOMETRICAL GTO
&END PP BASIS
<b>POTENTIAL
  PSEUDO TYPE GTH
  &GTH POTENTIAL
   2
        4
   0.24455430 2 -16.66721480 2.48731132
   2
   0.22095592 1 18.33745811
   0.21133247 0
  &END GTH POTENTIAL
&END POTENTIAL
```

```
&POWELL
ACCURACY 1.e-10
STEP_SIZE 0.5
WEIGHT_PSIR0 0.1
&END
```

&END ATOM
Pseudopotential Library

GTH_POTENTIALS

Few parameters

```
C GTH-BLYP-q4

2 2

0.33806609 2 -9.13626871 1.42925956

2

0.30232223 1 9.66551228

0.28637912 0

#

N GTH-BLYP-q5

2 3

0.28287094 2 -12.73646720 1.95107926

2

0.25523449 1 13.67893172

0.24313253 0
```

```
#
Al GTH-PBE-q3
2 1
0.45000000 1 -7.55476126
2
0.48743529 2 6.95993832 -1.88883584
2.43847659
0.56218949 1 1.86529857
```

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V_{\text{loc}}^{\text{PP}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) | -\frac{1}{2} \nabla^{2} | \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) | V_{\text{loc}}^{\text{PP}}(r) | \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < G_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V_{\text{loc}}^{\text{PP}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

Goedecker-Teter-Hutter (GTH) pseudo potentials:

Local part:

$$V_{\text{loc}}^{\text{PP}}(r) = -\frac{Z_{\text{ion}}}{r} \operatorname{erf}\left(\alpha^{\text{PP}}r\right) + \sum_{i=1}^{4} C_{i}^{\text{PP}}\left(\sqrt{2}\alpha^{\text{PP}}r\right)^{2i-2} \exp\left[-\left(\alpha^{\text{PP}}r\right)^{2}\right]$$

with
$$\alpha^{\mathsf{PP}} = \frac{1}{\sqrt{2}r_{\mathsf{loc}}^{\mathsf{PP}}}$$

Goedecker-Teter-Hutter (GTH) pseudo potentials:

Local part:

$$V_{\text{loc}}^{\text{PP}}(r) = -\frac{Z_{\text{ion}}}{r} \operatorname{erf}\left(\alpha^{\text{PP}}r\right) + \sum_{i=1}^{4} C_{i}^{\text{PP}}\left(\sqrt{2}\alpha^{\text{PP}}r\right)^{2i-2} \exp\left[-\left(\alpha^{\text{PP}}r\right)^{2}\right]$$

with
$$\alpha^{PP} = \frac{1}{\sqrt{2}r_{loc}^{PP}}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V_{\text{loc}}^{\text{PP}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V_{\text{loc}}^{\text{PP}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

Non-local part:

$$V_{\mathsf{nl}}^{\mathsf{PP}}(\mathbf{r},\mathbf{r'}) = \sum_{lm} \sum_{ij} \langle \mathbf{r} \mid p_i^{lm} \rangle h_{ij}^l \langle p_j^{lm} \mid \mathbf{r'} \rangle$$

with the Gaussian-type projectors

$$\langle \boldsymbol{r} \mid \boldsymbol{p}_{i}^{lm} \rangle = N_{i}^{l} Y^{lm}(\hat{r}) r^{l+2i-2} \exp\left[-\frac{1}{2}\left(\frac{r}{r_{l}}\right)^{2}\right]$$

Non-local part:

$$V_{\mathsf{nl}}^{\mathsf{PP}}(\boldsymbol{r}, \boldsymbol{r'}) = \sum_{lm} \sum_{ij} \langle \, \boldsymbol{r} \, | \, \boldsymbol{p}_i^{lm} \,
angle \, h_{ij}^{l} \, \langle \, \boldsymbol{p}_j^{lm} \, | \, \boldsymbol{r'} \,
angle$$

with the Gaussian-type projectors

$$\langle \mathbf{r} \mid \mathbf{p}_i^{lm} \rangle = N_i^l Y^{lm}(\hat{r}) r^{l+2i-2} \exp \left[-\frac{1}{2} \left(\frac{r}{r_l} \right)^2 \right]$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V_{\text{loc}}^{\text{PP}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\mathbf{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\mathbf{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\mathbf{r}) \mid V_{\text{loc}}^{\text{PP}}(\mathbf{r}) \mid \varphi_{\nu}(\mathbf{r}) \rangle +$$

$$4\pi \Omega \sum_{|\mathbf{G}| < G_{\text{C}}} \frac{\tilde{n}^{*}(\mathbf{G}) \tilde{n}(\mathbf{G})}{\mathbf{G}^{2}} +$$

$$\int \tilde{n}(\mathbf{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\mathbf{r}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V^{\text{PP}}_{\text{loc}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V_{\text{loc}}^{\text{PP}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

$$E^{\text{elec}}[n] = E^{\text{T}}[n] + E^{\text{V}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n]$$

$$= \sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid -\frac{1}{2} \nabla^{2} \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V^{\text{PP}}_{\text{loc}}(\boldsymbol{r}) \mid \varphi_{\nu}(\boldsymbol{r}) \rangle +$$

$$\sum_{\mu\nu} P^{\mu\nu} \langle \varphi_{\mu}(\boldsymbol{r}) \mid V^{\text{PP}}_{\text{nl}}(\boldsymbol{r}, \boldsymbol{r}') \mid \varphi_{\nu}(\boldsymbol{r}') \rangle +$$

$$4\pi \Omega \sum_{|\boldsymbol{G}| < \boldsymbol{G}_{\text{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}} +$$

$$\int \tilde{n}(\boldsymbol{r}) \varepsilon_{\text{XC}}[\tilde{n}] d\boldsymbol{r}$$

Periodic Hartree Potential via FFT

$$\boldsymbol{P} \to \rho(\mathbf{R}) \underbrace{\xrightarrow{\mathsf{FFT}}}_{\mathcal{O}(n\log n)} \rho(\mathbf{G}) \to V_{\mathrm{H}}(\mathbf{G}) = \frac{\rho(\mathbf{G})}{G^2} \xrightarrow{\mathsf{FFT}} V_{\mathrm{H}}(\mathbf{R}) \to \boldsymbol{V}$$

$$\rho(\mathbf{R}) = \sum_{\mu\nu} \mathbf{P}_{\mu\nu} \chi_{\mu}(\mathbf{R}) \chi_{\nu}(\mathbf{R}) = \sum_{\mu\nu} \mathbf{P}_{\mu\nu} \bar{\chi}_{\mu\nu}(\mathbf{R})$$

$$\boldsymbol{V}_{\mu\nu} = \sum_{\mathbf{R}} \boldsymbol{V}(\mathbf{R}) \chi_{\mu}(\mathbf{R}) \chi_{\nu}(\mathbf{R}) = \sum_{\mathbf{R}} \boldsymbol{V}(\mathbf{R}) \bar{\chi}_{\mu\nu}(\mathbf{R})$$

Efficient screening of sums using $\bar{\chi}_{\mu\nu}(\mathbf{R})$.

Screening

- Always work with primitive Gaussians
- Analytic integrals \rightarrow distance screening with R = A BOverlap $S_{\alpha\beta} \quad \varphi_{\alpha}(r - A) \leftrightarrow \varphi_{\beta}(r - B)$ $\downarrow \qquad \text{sparsity pattern}$ $T_{\alpha\beta}$
- Density on the real space grid

 $\sum_{\alpha\beta} P_{\alpha\beta} \varphi_{\alpha}(R) \varphi_{\beta}(R) \stackrel{\text{FFT}}{\rightarrow} \tilde{\rho}(G)$

 \downarrow overlap screening

 $P_{\alpha\beta}$ is only needed with $S_{\alpha\beta}$ sparsity pattern

• $\varphi_{\alpha\beta}(R) \neq 0$ distance (radial) screening

Screening

• All individual screening thresholds can be controlled by EPS_DEFAULT

CP2K_INPUT / FORCE_EVAL / DFT / QS

- Problems associated with thresholds
 - Failure in Cholesky decomposition of overlap matrix
 - Combination of basis set condition number and too big EPS_DEFAULT
 - Inaccurate charge on real space grid
 - Too low PW cutoff and/or too big EPS_DEFAULT (extend of $\varphi_{\alpha\beta}$)

$$E^{\mathrm{el}}[n] = \sum_{\mu\nu} P_{\mu\nu} \left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V_{\mathrm{loc}}^{\mathrm{SR}} + V_{\mathrm{nl}} \right| \varphi_{\nu} \right\rangle$$

+
$$2\pi\Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\mathrm{tot}}^{*}(\mathbf{G})\tilde{n}_{\mathrm{tot}}(\mathbf{G})}{\mathbf{G}^{2}} + \sum_{\mathbf{R}} \tilde{n}(\mathbf{R})V^{\mathrm{XC}}(\mathbf{R})$$

=
$$\sum_{\mu\nu} P_{\mu\nu} \left(\left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V^{\mathrm{ext}} \right| \varphi_{\nu} \right\rangle + \sum_{\mathbf{R}} V_{\mu\nu}^{\mathrm{HXC}}(\mathbf{R})\varphi_{\mu\nu}'(\mathbf{R}) \right)$$

Linear scaling KS matrix construction

External Potential

- Long range part (All electron and pseudopotentials) $V_l(\mathbf{r}) = -Z/r \qquad r \longrightarrow \infty$
- Short range part (only pseudopotentials) $(\alpha | V_{nl}(\mathbf{r}, \mathbf{r}') | \beta) = (\alpha | p) V_p(p | \beta)$

Auxilliary core potential:

$$V_{\text{core}}(\mathbf{r}) = -\frac{Z}{r} \text{erf}[-r/R_c]$$
$$V_{\text{core}}(\mathbf{r}) = \int \frac{\rho_c(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$
$$\rho_c(\mathbf{r}) = -\frac{Z}{R_c^3} \pi^{-3/2} \exp[-(r/R_c)^2]$$

External Potential

$$V_l(\mathbf{r}) = V_l(\mathbf{r}) - V_{\text{core}}(\mathbf{r}) + V_{\text{core}}(\mathbf{r})$$
$$V_l(\mathbf{r}) = V_s(\mathbf{r}) + V_{\text{core}}(\mathbf{r})$$

Special case of pseudopotentials used in Quickstep

$$V_l(\mathbf{r}) = -\frac{Z}{r} \operatorname{erf}[-r/R_c] + (C_1 + C_2 r^2 + C_3 r^4) \exp[-(r/r_{cl})^2]$$
$$V_l(\mathbf{r}) = (C_1 + C_2 r^2 + C_3 r^4) \exp[-(r/r_{cl})^2] + V_{\text{core}}(\mathbf{r})$$

Hartree Potential

Electrostatic energy:

$$\begin{split} E_{es} &= \frac{1}{2} \iint \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' + \int V_{\text{core}}(\mathbf{r})\rho(\mathbf{r}) \, d\mathbf{r} + \frac{1}{2} \sum_{A \neq B} \frac{Z_A Z_B}{|\mathbf{R}_A - \mathbf{R}_B|} \\ &= \frac{1}{2} \iint \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' + \iint \frac{\rho_c(\mathbf{r})\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' + \frac{1}{2} \sum_{A \neq B} \frac{Z_A Z_B}{|\mathbf{R}_A - \mathbf{R}_B|} \\ &= \frac{1}{2} \iint \frac{\rho_{tot}(\mathbf{r})\rho_{tot}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' - \frac{1}{2} \iint \frac{\rho_c(\mathbf{r})\rho_c(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' + \frac{1}{2} \sum_{A \neq B} \frac{Z_A Z_B}{|\mathbf{R}_A - \mathbf{R}_B|} \\ &= \frac{1}{2} \iint \frac{\rho_{tot}(\mathbf{r})\rho_{tot}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} d\mathbf{r}' + E_{\text{overlap}} - E_{\text{self}} \end{split}$$

 $\rho_{tot}(\mathbf{r}) = \rho(\mathbf{r}) + \rho_c(\mathbf{r})$

Hartree Potential

$$E_{es} = \frac{1}{2} \int \int \frac{\rho_{tot}(\mathbf{r})\rho_{tot}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + \frac{1}{2} \sum_{A \neq B} \frac{Z_A Z_B}{R_{AB}} \operatorname{erfc}\left[\frac{R_{AB}}{R_c}\right] - \sum_A \frac{1}{\sqrt{2\pi}} \frac{Z_A^2}{R_c}$$

- Long range term $(\rho_{tot}(\mathbf{r}))$
- Short range pair potential term (erfc)
- Self energy term

Auxiliary Basist Set

Long range term : Non-local Coulomb

$$E^{\mathrm{H}}[n_{\mathrm{tot}}] = \frac{1}{2} \int \int \frac{n_{\mathrm{tot}}(\mathbf{r})n_{\mathrm{tot}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

Southogonal, unbiased, naturally periodic PW basis

$$\tilde{n}(\mathbf{r}) = \frac{1}{\Omega} \sum_{\mathbf{G}} \tilde{n}(\mathbf{G}) \ e^{i\mathbf{G}\cdot\mathbf{r}}$$

Efficient Mapping FFT

Linear scaling solution of the Poisson equation

$$E^{\rm H}[n_{\rm tot}] = 2\pi\Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\rm tot}^*(\mathbf{G})\tilde{n}_{\rm tot}(\mathbf{G})}{\mathbf{G}^2}$$

Auxiliary Basist Set

Long range term : Non-local Coulomb

$$E^{\mathrm{H}}[n_{\mathrm{tot}}] = \frac{1}{2} \int \int \frac{n_{\mathrm{tot}}(\mathbf{r})n_{\mathrm{tot}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

貒 Orthogonal, unbiased, naturally periodic PW basis

Linear scaling solution of the Poisson equation

$$E^{\mathrm{H}}[n_{\mathrm{tot}}] = 2\pi\Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\mathrm{tot}}^{*}(\mathbf{G})\tilde{n}_{\mathrm{tot}}(\mathbf{G})}{\mathbf{G}^{2}}$$

Real-Space Integration

Finite cutoff and simulation box define a real space grid

✤ Density collocation

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \to \sum_{\mu\nu} P_{\mu\nu} \bar{\varphi}_{\mu\nu}(\mathbf{R}) = n(\mathbf{R})$$

Screening Truncation

Real-Space Integration

Finite cutoff and simulation box define a real space grid

✗ Density collocation

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \to \sum_{\mu\nu} P_{\mu\nu} \bar{\varphi}_{\mu\nu}(\mathbf{R}) = n(\mathbf{R})$$

Screening Truncation

$$\hat{n}(\mathbf{G}) \to V_H(\mathbf{G}) = \frac{\hat{n}(\mathbf{G})}{G^2} \to V_H(\mathbf{R})$$

Real-Space Integration

Finite cutoff and simulation box define a real space grid

Density collocation

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu}\varphi_{\mu}(\mathbf{r})\varphi_{\nu}(\mathbf{r}) \to \sum_{\mu\nu} P_{\mu\nu}\bar{\varphi}_{\mu\nu}(\mathbf{R}) = n(\mathbf{R})$$

Screening Truncation

$$\hat{n}(\mathbf{G}) \to V_H(\mathbf{G}) = \frac{\hat{n}(\mathbf{G})}{G^2} \to V_H(\mathbf{R})$$

Numerical approximation of the gradient

 $n(\mathbf{R}) \to \nabla n(\mathbf{R})$

$$v_{XC}[n](\mathbf{r}) \to V_{XC}(\mathbf{R}) = \frac{\partial \epsilon_{xc}}{\partial n}(\mathbf{R})$$

✗ XC evaluated on the grid

$$H_{HXC}^{\mu\nu} = \langle \mu | V_{HXC}(\mathbf{r}) | \nu \rangle \to \sum_{R} V_{HXC}(R) \varphi_{\mu\nu}'(R)$$

G. Lippert et al, Molecular Physics, 92, 477, 1997

Low density region can induce unphysical behavior of terms such $rac{|
abla n|^2}{n^lpha}$

Small variations of the total energy as atoms move relative to the grid

Multigrids

$$E_{\text{cut}}^{i} = \frac{E_{\text{cut}}^{1}}{\alpha^{(i-1)}}, \qquad i = 1..N$$

the exponent of Gaussian product selects the grid number of grid points is exponent-independent
$$\sigma_{p}^{2} = 1/2\eta_{p} \qquad \underbrace{\text{Accuracy}}_{\substack{\text{relative Cutoff}\\ \sim 30 \text{ Ry}}}$$

CP2K DFT Input

&FORCE_EVAL METHOD Quickstep

& DFT

BASIS SET FILE NAME GTH BASIS SETS POTENTIAL FILE NAME GTH POTENTIALS LSD F MULTIPLICITY 1 CHARGE 0 &MGRID CUTOFF 300 REL CUTOFF 50 &END MGRID &**0S** EPS DEFAULT 1.0E-10 &END **OS &SCF** MAX SCF 50 EPS_SCF 2.00E-06 SCF GUESS ATOMIC &END SCF &**XC &XC FUNCTIONAL** &PBE &END PBE &END XC FUNCTIONAL

&XC GRID XC DERIV SPLINE2 smooth XC SMOOTH RHO NN10 &END XC GRID &END XC &END DFT **&SUBSYS &CELL** PERIODIC XYZ ABC 8. 8. 8. &FND CELL &COORD 0 0.000000 0.000000 -0.065587 H 0.000000 -0.757136 0.520545 H 0.000000 0.757136 0.520545 &END COORD &KIND H BASIS SET DZVP-GTH-PBE POTENTIAL GTH-PBE-q1 **&END KIND** &KIND 0 BASIS SET DZVP-GTH-PBE POTENTIAL GTH-PBE-q6 **&END KIND &END SUBSYS** &END FORCE EVAL

Hard & Soft Densities

Formaldehyde

Seudopotential ⇒ frozen core

 \implies Augmented PW \Rightarrow separate regions (matching at edges) LAPW, LMTO (OK Andersen, PRB 12, 3060 (1975)

 \gg Dual representation \Rightarrow localized orbitals and PW PAW (PE Bloechl, PRB, 50, 17953 (1994))

Partitioning of the Density

 $n = \tilde{n} + \sum_{A} n_{A} - \sum_{A} \tilde{n}_{A}$

Partitioning of the Density

$$n = \tilde{n} + \sum_{A} n_{A} - \sum_{A} \tilde{n}_{A}$$

$$n(\mathbf{r}) - \tilde{n}(\mathbf{r}) = 0$$

$$n_A(\mathbf{r}) - \tilde{n}_A(\mathbf{r}) = 0 \left\{ \mathbf{r} \in I \right\}$$

$$\begin{array}{ccc} n(\mathbf{r}) & - & n_A(\mathbf{r}) = 0 \\ \tilde{n}(\mathbf{r}) & - & \tilde{n}_A(\mathbf{r}) = 0 \end{array} \right\} \mathbf{r} \in A$$

Partitioning of the Density

$$n = \tilde{n} + \sum_{A} n_{A} - \sum_{A} \tilde{n}_{A}$$

$$\begin{array}{ccc} n(\mathbf{r}) & - & \tilde{n}(\mathbf{r}) = 0 \\ n_A(\mathbf{r}) & - & \tilde{n}_A(\mathbf{r}) = 0 \end{array} \right\} \mathbf{r} \in I$$

$$\begin{array}{ccc} n(\mathbf{r}) & - & n_A(\mathbf{r}) = 0 \\ \tilde{n}(\mathbf{r}) & - & \tilde{n}_A(\mathbf{r}) = 0 \end{array} \right\} \mathbf{r} \in A$$

$$n_{A}(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \chi^{A}_{\mu} \chi^{A}_{\nu} \qquad \tilde{n}(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \tilde{\varphi}_{\mu} \tilde{\varphi}_{\nu} \to \sum_{\mathbf{G}} \hat{n}(\mathbf{G}) e^{i\mathbf{G}\cdot\mathbf{R}}$$

Gaussian Augmented Plane Waves

Semi-local functional like local density approximation, generalized gradient approximation or meta-functionals

Gradient:
$$\nabla n(\mathbf{r}) = \nabla \tilde{n}(\mathbf{r}) + \sum_{A} \nabla n_{A}(\mathbf{r}) - \sum_{A} \nabla \tilde{n}_{A}(\mathbf{r})$$
$$E[n] = \int V_{loc}(\mathbf{r})n(\mathbf{r}) = \int \left\{ \tilde{V}_{loc}(\mathbf{r}) + \sum_{A} \frac{V_{loc}^{A}(\mathbf{r})}{V_{loc}(\mathbf{r})} + \sum_{A} \tilde{V}_{loc}^{A}(\mathbf{r}) \right\}$$
$$\times \left\{ \tilde{n}(\mathbf{r}) + \sum_{A} n_{A}(\mathbf{r}) - \sum_{A} \tilde{n}_{A}(\mathbf{r}) \right\} d\mathbf{r}$$

Semi-local functional like local density approximation, generalized gradient approximation or meta-functionals

Gradient:
$$\nabla n(\mathbf{r}) = \nabla \tilde{n}(\mathbf{r}) + \sum_{A} \nabla n_{A}(\mathbf{r}) - \sum_{A} \nabla \tilde{n}_{A}(\mathbf{r})$$
$$E[n] = \int V_{loc}(\mathbf{r})n(\mathbf{r}) = \int \left\{ \tilde{V}_{loc}(\mathbf{r}) + \sum_{A} V_{loc}^{A}(\mathbf{r}) + \sum_{A} \tilde{V}_{loc}^{A}(\mathbf{r}) \right\}$$
$$\times \left\{ \tilde{n}(\mathbf{r}) + \sum_{A} n_{A}(\mathbf{r}) - \sum_{A} \tilde{n}_{A}(\mathbf{r}) \right\} d\mathbf{r}$$
$$= \int \left\{ \tilde{V}_{loc}(\mathbf{r})\tilde{n}(\mathbf{r}) + \sum_{A} V_{loc}^{A}(\mathbf{r})n_{A}(\mathbf{r}) - \sum_{A} \tilde{V}_{loc}^{A}(\mathbf{r})\tilde{n}_{A}(\mathbf{r}) \right\}$$

Density, Dependent Terms: ES

Non local Coulomb operator

$$\mathbf{n^{0}}(\mathbf{r}) = \sum_{A} \mathbf{n^{0}_{A}}(\mathbf{r}) = \sum_{A} \left\{ \sum_{L} Q_{A}^{L} g_{A}^{L}(\mathbf{r}) \right\}$$

Compensation charge

Same multipole expansion as the local densities

$$\mathcal{Q}_A^L = \int \left\{ n_A(\mathbf{r}) - \tilde{n}_A(\mathbf{r}) + n_A^Z(\mathbf{r}) \right\} r^l \mathcal{Y}_{lm}(\theta\phi) r^2 dr \sin(\theta) d\theta d\phi$$

$$V[\tilde{n} + \mathbf{n}^0] + \sum_A V[\mathbf{n}_A + n_A^Z] - \sum_A V[\tilde{\mathbf{n}}_A + \mathbf{n}_A^0]$$

Density Dependent Terms: ES

Non local Coulomb operator

ľ

$$\mathbf{n^{0}}(\mathbf{r}) = \sum_{A} \mathbf{n^{0}_{A}}(\mathbf{r}) = \sum_{A} \left\{ \sum_{L} Q_{A}^{L} \ g_{A}^{L}(\mathbf{r}) \right\}$$

Compensation charge

Same multipole expansion as the local densities

$$\mathcal{Q}_A^L = \int \left\{ n_A(\mathbf{r}) - \tilde{n}_A(\mathbf{r}) + n_A^Z(\mathbf{r}) \right\} r^l \mathcal{Y}_{lm}(\theta\phi) r^2 dr \sin(\theta) d\theta d\phi$$

$$V[\tilde{n} + \mathbf{n}^{0}] + \sum_{A} V[\underline{n_{A}} \times n_{A}^{Z}] - \sum_{A} V[\underline{\tilde{n}_{A}} \times \mathbf{n}_{A}^{0}]$$

Interstitial region

Density Dependent Terms: ES

Non local Coulomb operator

$$\mathbf{n^{0}}(\mathbf{r}) = \sum_{A} \mathbf{n^{0}_{A}}(\mathbf{r}) = \sum_{A} \left\{ \sum_{L} Q_{A}^{L} \ g_{A}^{L}(\mathbf{r}) \right\}$$

Compensation charge

Same multipole expansion as the local densities

$$\mathcal{Q}_A^L = \int \left\{ n_A(\mathbf{r}) - \tilde{n}_A(\mathbf{r}) + n_A^Z(\mathbf{r}) \right\} r^l \mathcal{Y}_{lm}(\theta\phi) r^2 dr \sin(\theta) d\theta d\phi$$

$$V[\tilde{n} + n^0] + \sum_A V[n_A + n_A^Z] - \sum_A V[\tilde{n}_A + n_A^0]$$

Atomic region

GAPW Functionals

$$E_{xc}[n] = E_{xc}[\tilde{n}] + \sum_{A} E_{xc}[n_{A}] - \sum_{A} E_{xc}[\tilde{n}_{A}]$$
$$E_{H}[n + n^{Z}] = E_{H}[\tilde{n} + \mathbf{n}^{0}] + \sum_{A} E_{H}[n_{A} + n_{A}^{Z}] - \sum_{A} E_{H}[\tilde{n}_{A} + \mathbf{n}^{0}]$$

GAPW Functionals

$$E_{xc}[n] = E_{xc}[\tilde{n}] + \sum_{A} E_{xc}[n_{A}] - \sum_{A} E_{xc}[\tilde{n}_{A}]$$
$$E_{H}[n + n^{Z}] = E_{H}[\tilde{n} + \mathbf{n}^{0}] + \sum_{A} E_{H}[n_{A} + n_{A}^{Z}] - \sum_{A} E_{H}[\tilde{n}_{A} + \mathbf{n}^{0}]$$

on global grids via collocation + FFT

Lippert et al., Theor. Chem. Acc. 103, 124 (1999); Krack et al, PCCP, **2**, 2105 (2000) Analytic integrals Local Spherical Grids

lannuzzi, Chassaing, Hutter, Chimia (2005); VandeVondele , lannuzzi, Hutter, CSCM2005 proceedings

GAPW Input

&DFT	
&QS EXTRAPOLATI	ON ASPC
EXTRAPULATI	UN_URDER 4
EPS_DEFAULT	1.0E-12
METHOD GAPW	
EPS_DEFAULT	1.0E-12
QUADRATURE	GC_LOG
EPSFIT	1.E-4
EPSIS0	1.0E-12
EPSRH00	1.E-8
LMAXNØ	4
LMAXN1	6
ALPHA0 H	10
&END QS	

&SUBSYS

•••

#

&KIND 0 BASIS_SET DZVP-MOLOPT-GTH-q6 POTENTIAL GTH-BLYP-q6 LEBEDEV_GRID 80 RADIAL_GRID 200 &END KIND &KIND 01 ELEMENT 0 BASIS_SET 6-311++G2d2p BASIS_SET 6-311G** POTENTIAL ALL LEBEDEV_GRID 80 RADIAL_GRID 200 &END KIND

&END DFT

All-Electron Calculations

All-Electron Calculations

Energy Functional Minimization

$$C^* = \arg\min_{C} \left\{ E(C) : C^T S C = 1 \right\}$$

Standard: Diagonalisation + mixing (DIIS, Pulay, J. Comput. Chem. 3, 556,(1982); iterative diag. Kresse G. et al, PRB, 54(16), 11169, (1996))

Direct optimisation: Orbital rotations (maximally localised Wannier functions)

Linear scaling methods: Efficiency depends on sparsity of P (S. Goedecker, Rev. Mod. Phys. 71, 1085,(1999))

Orbital Transformation Method

Introduce auxiliary, linearly constrained variables to parametrize the occupied subspace

not linear orthonormality constraint $\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C} = \mathbf{I}$ Linear constraint $\mathbf{XSC}_0 = 0$

 $\mathbf{C}(\mathbf{X}) = \mathbf{C}_0 \cos(\mathbf{U}) + \mathbf{X} \mathbf{U}^{-1} \sin(\mathbf{U})$

 $\mathbf{U} = (\mathbf{X}^{\dagger} \mathbf{S} \mathbf{X})^{1/2}$

Preconditioned gradients

 $P(H - S\epsilon)X - X \approx 0$ $X \to \sqrt{P}X$

Orbital Transformation Method

Introduce auxiliary, linearly constrained variables to parametrize the occupied subspace

not linear orthonormality constraint $\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C}=\mathbf{I}$

 $\mathbf{C}(\mathbf{X}) = \mathbf{C}_0 \cos(\mathbf{U}) + \mathbf{X} \mathbf{U}^{-1} \sin(\mathbf{U})$

minimization in the auxiliary tangent space, idempotency verified

 $\frac{\partial E(\mathbf{C}(\mathbf{X})) + \operatorname{Tr}(\mathbf{X}^{\dagger}\mathbf{S}\mathbf{C}_{0}\Lambda)}{\partial \mathbf{X}} = \frac{\partial E}{\partial C}\frac{\partial \mathbf{C}}{\partial \mathbf{X}} + \mathbf{S}\mathbf{C}_{0}\Lambda$

Preconditioned gradients

 $P(H - S\epsilon)X - X \approx 0$ $X \to \sqrt{P}X$

Linear constraint $\mathbf{XSC}_0 = 0$

$$\mathbf{U} = (\mathbf{X}^{\dagger} \mathbf{S} \mathbf{X})^{1/2}$$

quality basis set

© Guaranteed convergence
Various choices of preconditioners
Limited number of SCF iterations
KS diagonalization avoided
Sparsity of S and H can be exploited
Scaling O(N²M) in cpu and O(NM) in memory
Optimal for large system, high

OT Method Performance

Refined preconditioner, most effective during MD of large systems with well conditioned basis sets

Schiffmann, VandeVondele, JCP 142 244117 (2015)

OT Method Input

&SCF EPS_SCF 1.01E-07 &OUTER_SCF MAX_SCF 20 EPS_SCF 1.01E-07 &END OUTER_SCF SCF_GUESS RESTART MAX_SCF 20 &OT MINIMIZER DIIS PRECONDITIONER FULL_ALL &END OT &END SCF

Iterative Refinement $C^* = \arg\min_{C} \{E[C] \mid C^TSC = 1\}$

unconstrained functional minimization

$$Z^* = \arg\min_{Z} \left\{ E[f(Z)] \right\} \qquad \qquad C^* = f(Z^*) \qquad f^T(Z)Sf(Z) = 1 \quad \forall Z$$

approximate constraint function fn

$$f_n(Z) : f_n^T(Z)Sf_n(Z) - 1 = \mathcal{O}(\delta Z^{n+1}) \quad \forall Z = Z_0 + \delta Z \quad \text{if } Z_0^T SZ_0 = 1$$

$$\begin{aligned} f_1(Z) &= \frac{1}{2}Z(3-Y) \qquad f_2(Z) = \frac{1}{8}Z(15-10Y+3Y^2) \qquad f_3(Z) = \frac{1}{16}Z(35-35Y+21Y^2-5Y^3) \\ f_4(Z) &= \frac{1}{128}Z(315-420Y+378Y^2-180Y^3+35Y^4) \end{aligned} \qquad \qquad \begin{array}{l} \text{Approximate Löwdin} \\ \text{factorization} \end{aligned}$$

 $f_n(\ldots f_n(Z)\ldots)$

Includes only matrix additions and multiplications Simplifies parallelization and use sparsity

V. Weber et al, JCP, 128, 084113, 2008

Directed Minimization

Input matrices

 $h \ S \ C_0 \ p$

Gradient

 $D_0 = -G_0 = -G[C_0]$

Dye-Sensitized Solar Cells

In situ electronic spectroscopy and dynamics

dye-iodide complex attached to TiO2

1751 atom computational cell, 864 (TiO2), 60 dye+electrolyte, 828 solvent
9346 electrons, 22951 basis functions
MD simulation using PBE (DFT+U)
CPU time on 1024 cores Cray-XT5
SCF iteration: 13.7 seconds
MD time step: 164 seconds

F. Schiffmann et al., PNAS 107 4830 (2010)

Linear-Scaling DFT

$$P = \frac{1}{2} \left(I - \text{sign} \left(S^{-1} H - \mu I \right) \right) S^{-1}$$

Self consistent solution by mixing $H_{n+1}(P_{n+1})$ $\hat{H}_{n+1} = (1 - \alpha)\hat{H}_n - \alpha H_{n+1}$

$$\mu_{n+1}$$
: $|\operatorname{trace}(P_{n+1}S) - N_{el}| < 1/2$

VandeVondele, Borstnik, Hutter; JCTC 10, 3566 (2012)

Sparse Matrix Library

DBCSR: Distributed Blocked Compressed Sparse Row

****** For massively parallel architectures

Optimised for 10000s of non-zeros per row (dense limit)

Stored in block form : atoms or molecules

Cannons algorithm: 2D layout (rows/columns) and 2D distribution of data

Homogenised for load balance

given processor communicates only with nearest neighbours transferred data decreases as number of processors increases

Millions of Atoms

Bulk liquid water. Dashed lines represent ideal linear scaling.

Traditional Diagonalization

Eigensolver from standard parallel program library: SCALAPACK

 $\mathbf{KC} = \mathbf{SC}\varepsilon$

Transformation into a standard eigenvalues problem

Cholesky decomposition $\mathbf{S} = U^T U$ $\mathbf{C}' = U \mathbf{C}$

$$\mathbf{K}\mathbf{C} = U^T U \mathbf{C}\varepsilon \quad \Rightarrow \quad \left[(U^T)^{-1} \mathbf{K} U^{-1} \right] \mathbf{C}' = \mathbf{C}'\varepsilon$$

Diagonalisation of K' and back transformation of MO coefficients (occupied only (20%))

DIIS for SCF convergence acceleration: few iterations $\mathbf{error} \ \mathbf{matrix}$ $\mathbf{e} = \mathbf{KPS} - \mathbf{SPK}$

scaling $(O(M^3))$ and stability problems

Metallic Electronic Structure

$$E_{\text{band}} = \sum_{n} \frac{1}{\Omega_{\text{BZ}}} \int_{\text{BZ}} \varepsilon_{n\mathbf{k}} \Theta(\varepsilon_{n\mathbf{k}} - E_f) d^3 \mathbf{k} \quad \rightarrow \sum_{n} \sum_{k} w_{\mathbf{k}} \varepsilon_{n\mathbf{k}} \Theta(\varepsilon_{n\mathbf{k}} - E_f) d^3 \mathbf{k}$$

charge sloshing and exceedingly slow convergence

Wavefunction must be orthogonal to unoccupied bands close in energy

Discontinuous occupancies generate instability (large variations in n(r))

% Integration over k-points and iterative diagonalisation schemes

Smearing & Mixing in G-Space

Mermin functional: minimise the free energy

$$F(T) = E - \sum_{n} k_B T S(f_n) \qquad S(f_n) = -[f_n \ln f_n + (1 - f_n) \ln(1 - f_n)]$$

Any smooth operator that allows accurate $S(f_n)$ to recover the T=0 result

$$f_n\left(\frac{\varepsilon_n - E_f}{kT}\right) = \frac{1}{\exp\left(\frac{\varepsilon_n - E_f}{k_{\rm B}T}\right) + 1}$$
 Fermi-Dirac

Trial density mixed with previous densities: damping oscillations

$$n_{m+1}^{\text{inp}} = n_m^{\text{inp}} + \mathbf{G}^I \mathcal{R}[n_m^{\text{inp}}] + \sum_{i=1}^{m-1} \alpha_i \left(\Delta n_i + \mathbf{G}^I \Delta \mathcal{R}_i \right)$$

residual

$$\mathcal{R}[n^{\mathrm{inp}}] = n^{\mathrm{out}}[n^{\mathrm{inp}}] - n^{\mathrm{inp}}$$

minimise the residual G preconditioning matrix damping low G

Iterative Improvement of $n(\mathbf{r})$ Input density matrix $\mathbf{P}_{\alpha\beta}^{\mathrm{in}} \to n^{\mathrm{in}}(\mathbf{r})$ Update of KS Hamiltonian diagonalization plus iterative refinement $\mathbf{C}_n \varepsilon_n$ Calculation of Fermi energy and occupations $\,E_f\,\,f_n\,$ New density matrix $\mathbf{P}_{\alpha\beta}^{\mathrm{out}} n^{\mathrm{new}}(\mathbf{r})$ $\mathbf{P}_{\alpha\beta}^{\mathrm{out}} \to n^{\mathrm{out}}(\mathbf{r})$ density **Build KS** Check convergence other $\max\left\{\mathbf{P}_{\alpha\beta}^{\mathrm{out}}-\mathbf{P}_{\alpha\beta}^{\mathrm{in}}\right\}$ Eigensolver Density mixing $n^{\text{out}} n^{\text{in}} n^{\text{h}} \dots \rightarrow n^{\text{new}}$

Rhodium: Bulk & Surface

Bulk: 4x4x4

Surface: 6x6 7 layers

Basis	PP	a ₀ [Å]	B[GPa]	E _s [eV/Å ²]	W _f [eV]
3s2p2df	17e	3.80	258.3	0.186	5.11
2s2p2df	9e	3.83	242.6	0.172	5.14
2sp2d	9e	3.85	230.2	0.167	5.20
spd	9e	3.87	224.4	0.164	5.15

ScaLAPACK for diagonalization

576 Cu, nao=14400, Nelect.=6336, k of eigen-pairs=3768

nprocs	syevd	syevr	Cholesky		
32	106 (49%)	72 (40%)	38 (21%)		
64	69 (46%)	48 (37%)	34 (26%)		
128	41 (41%)	29 (34%)	23 (28%)		
256	35 (41%)	26 (34%)	24 (32%)		
Syevd: D&C					

time × SCF, on CRAY XE6 >70% in eigenvalue solver poor scaling

ELPA (http://elpa.rzg.mpg.de)

Improved efficiency by a two-step transformation and back transformation

Large Metallic Systems

hBN/Rh(111) Nanomesh 13x13 hBN on 12x12 Rh slab

Slab 12×12 Rh(111) slab, a0=3.801 Å, 1 layer hBN 13×13 4L: 576Rh + 169BN: Nao=19370 ; Nel=11144 7L: 1008Rh + 338BN: Nao=34996 ; Nel=19840

Structure opt. > 300 iterations => 1÷2 weeks on 512 cores

graph./Ru(0001) Superstructure 25x25 g on 23x23 Ru

2116 Ru atoms (8 valence el.) + 1250 C atoms, Nel=21928, Nao=47990 ;

~ several days per structure optimisation

Iannuzzi et al., PRB (2013) Cun, Iannuzzi et al, Nano Letter (2013)

SCF for Metals

&SCF SCF GUESS ATOMIC MAX SCF 50 EPS SCF 1.0e-7 EPS DIIS 1.0e-7 **&SMEAR** METHOD FERMI DIRAC ELECTRONIC_TEMPERATURE 500. &END **SMEAR &MIXING** METHOD BROYDEN_MIXING ALPHA 0.6 BETA 1.0 **NBROYDEN 15** &END **MIXING** ADDED MOS 20 20 &END SCF

&**XC**

&XC_FUNCTIONAL PBE &END &vdW_POTENTIAL DISPERSION_FUNCTIONAL PAIR_POTENTIAL &PAIR_POTENTIAL TYPE DFTD3 PARAMETER_FILE_NAME dftd3.dat REFERENCE_FUNCTIONAL PBE &END PAIR_POTENTIAL &END vdW_POTENTIAL &END XC

							$a_{\rm Ru} = 2.718$			
	T T 11	Experiment	2.46	1.42	2.7059	9.09		2.18		
Hills Xr		12011 D7 TBH D3	2.469	1.425	2.681	790 7		2.18	3.69	1.51
	V CIIC,	120n11 D2 PBE rVV10	2.468		2.677	7.807	9.19794	2.18	3.61	1.43
	C C	12on11 DZ BEEF	2.456	1.418	2.703	9.138	9.63944	2.23	3.77	1.55
	hill	12 on 11 DZ opt B88 DRSLL	2.467	1.424	2.690	8.290	9.23473	2.24	3.69	1.46
vallev 🗃		12on11 DZ optPBE rVV10	2.468	1 ,425	prabh	ep.q ₉₆	9.19794	2.16	3.55	1.38
	<u></u>	12on11 TZ PBE rVV10	2.468	1.425	2.677	7.807	9.19794	2.18	3.61	1.43
	****	25on23 DZ PBE rVV10	2.468	1.425	<u>R</u> .07 5 1	aþ.807	9.19794	2.18	3.55	1.38
		25on23 DZ revPBE D2	2.471	1.426	2.672	7.52	9.08756	2.21	3.22	1.02

Method	h_{\min} (Å)	Δh (Å)
$LEEM^{5}$	1.5 ± 0.1	-
$LEED^{18}$	2.1 ± 0.2	1.5 ± 0.2
$SXRD^{21}$	-	0.82 ± 0.15
HAS^{19}	-	0.17 ± 0.03

Issues: binding distance corrugation height distribution

Electron Density: Cube File

Valence density on regular grids

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \to \sum_{\mu\nu} P_{\mu\nu} \bar{\varphi}_{\mu\nu}(\mathbf{R}) = n(\mathbf{R})$$

Cutoff might be too small for high resolution close to the nuclei (all electrons)

$$\psi_i(\mathbf{r}) = \sum_{\mu} C_{\mu i} \varphi_{\mu}(\mathbf{r}) \to \sum_{\mu} C_{\mu i} \bar{\varphi}(\mathbf{R}) = \psi_i(\mathbf{R})$$

-Quickstep-

TOTAL DENSITY

8	0.000000	0.000000	0.000000	
54	0.34994	9 0.000000	0.000000	
54	0.00000	0 0.349949	0.000000	
63	0.00000	0 0.00000	0.362827	
5	0.000000	9.448631	9.44863 I	11.338357
5	0.000000	9.448631	9.44863 I	14.683172
I	0.000000) .3223 3	9.44863 I	13.010846
Ι	0.000000	7.574948	9.44863 I	13.010846
I	0.000000	9.448631	11.416848	15.778669
Ι	0.000000	9.448631	7.480413	15.778669
I	0.000000	9.448631	7.480413	10.242860
Ι	0.000000	9.448631	11.416848	10.242860
0.I	6324E-08	0.14425E-08	0.13016E-08	0.12075E-08

0.16324E-08 0.14425E-08 0.13016E-08 0.12075E-08 0.11584E-08 0.11533E-08 0.11920E-08 0.12755E-08 0.14051E-08 0.15832E-08 0.18123E-08 0.20955E-08 0.24355E-08 0.28348E-08 0.32950E-08 0.38170E-08 0.44000E-08 0.50422E-08

Spin Density

Spin polarized DFT calculations:

$$n^{(\alpha)}(\mathbf{r}) = \sum_{\mu\nu} P^{(\alpha)}_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \qquad n^{(\beta)}(\mathbf{r}) = \sum_{\mu\nu} P^{(\beta)}_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r})$$

$$\Delta n_{\rm spin}(\mathbf{r}) = n^{(\alpha)}(\mathbf{r}) - n^{(\beta)}(\mathbf{r}) \rightarrow \Delta n_{\rm spin}(\mathbf{R})$$

H₃C-CO-NH₂-CH₃

(H₃C-CO-NH₂-CH₃)⁺

Density Difference

Changes in the electronic density due to interactions, e.g., molecule adsorbed on substrate

$$E_{\rm ads} = E_{\rm tot} - (E_{\rm sub}^o + E_{\rm mol}^o) \qquad \qquad E_{\rm int} = E_{\rm tot} - \left(E_{\rm sub}^f + E_{\rm mol}^f\right)$$

CHP on hBN/Rh (5 eV)

$$\Delta n_{\rm int}(\mathbf{r}) = n_{\rm tot}(\mathbf{r}) - \left(n_{\rm sub}^f(\mathbf{r}) + n_{\rm mol}^f(\mathbf{r}) \right)$$

STM Images

Tersoff-Hamann approximation to mimic the iso-current topography

$$n_b(\mathbf{r}) = \sum_{i:\varepsilon_i \in [E_f - V_b:E_f]} \left[\sum_{\mu\nu} C^*_{\mu i} C_{\nu i} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \right] \to n_b(\mathbf{R})$$

Find height at constant energy projected density

$$z: n_b(X, Y, z) e^{-2kR_0\sqrt{\Phi(X, Y, z)}}$$

CHP on hBN/Rh (5 eV)

occupied states

unoccupied states

Position Operator for Isolated Systems

One body operator

$$\hat{X} = \sum_{i=1}^{N} x_i$$

Expectation value

$$\langle X \rangle = \langle \Psi | \hat{X} | \Psi \rangle = \int x \ n(x) dx$$

Gauge invariance

$$\langle X \rangle_R = \langle \Psi | \hat{X} + R | \Psi \rangle = \langle X \rangle_0 + R \int n(x) dx = \langle X \rangle_0 + RZ$$
Position Operator with PBC

Expectation value of the position operator

$$\hat{\mathbf{R}} = \sum_{i}^{\mathbf{r}} \hat{\mathbf{r}}_{i} \qquad \langle \mathbf{R} \rangle = \langle \Psi | \hat{\mathbf{R}} | \Psi \rangle = \int \mathbf{r} n(\mathbf{r}) d\mathbf{r}$$
 (3D)

Wavefunctions are periodic, result of an operator has also to be periodic

$$\Psi(\mathbf{r}) = \Psi(\mathbf{r} + \mathbf{L}) \qquad \hat{\mathbf{R}}\Psi(\mathbf{r}) \neq (\hat{\mathbf{R}} + \mathbf{L})\Psi(\mathbf{r} + \mathbf{L})$$

Many-body periodic position operator (1D)

$$\langle X \rangle = \frac{L}{2\pi} \operatorname{Im} \ln \langle \Psi \mid e^{i \frac{2\pi}{L} \hat{X}} \mid \Psi \rangle$$

Berry Phase

Electronic polarisation

$$P_{\rm el} = \lim_{L \to \infty} \frac{e}{2\pi} \operatorname{Im} \ln \langle \Psi \mid e^{i\frac{2\pi}{L}\widehat{X}} \mid \Psi \rangle$$

Resta, R. (1998). Quantum-Mechanical Position Operator in Extended Systems. *Physical Review Letters*, **80**(9), 1800–1803.

Polarization

Many-body wavefunction (Bloch orbitals)

$$|\Psi\rangle = A \prod_{i} \prod_{s} \psi_{q_s,i}(\mathbf{r})$$

New set of Bloch orbitals

$$\tilde{\psi}_{q_s,m}(x) = e^{-i\frac{2\pi}{L}x}\psi_{q_s,m}(x) \qquad \qquad \frac{2\pi}{L} = G_1$$

Expectation value from overlap of determinants = determinants of overlap of orbitals

$$\langle X \rangle = -\frac{L}{2\pi} Im \ln \langle \Psi | \tilde{\Psi} \rangle = -\frac{L}{2\pi} Im \ln \det S$$

$$S_{ij}^{\alpha} = \int \psi_i(\mathbf{r}) e^{i\mathbf{G}_{\alpha \mathbf{1}} \cdot \mathbf{r}} \psi_j(\mathbf{r}) d\mathbf{r} \qquad P^{\alpha} = \frac{2e}{\mathbf{G}_{\alpha \mathbf{1}}} \operatorname{Im} \ln\left[\det \mathbf{S}^{\alpha}\right]$$

Localized Orbitals

Boys spread of the orbitals through a 2-el operator $\Omega=\sum_i\langle\psi_i\psi_i|({f r}_1-{f r}_2)^2|\psi_i\psi_i
angle$

* With PBC, localize equivalent to minimize

$$\Omega = \frac{1}{2\pi} \sum_{s} \sum_{i} \omega_s (1 - (|z_{si}|^2)) \qquad z_{si} = \int d\mathbf{r} \ e^{i\mathbf{k_s} \cdot \mathbf{r}} |\psi_i(\mathbf{r})|^2$$

Find the unitary transformation

$$\tilde{\psi}_i(\mathbf{r}) = \sum_j U_{ij} \psi_i(\mathbf{r}) \qquad \qquad \frac{\partial \Omega}{\partial U_{ij}} = 0$$

Iterative procedure (parallel Jacobi rotations)

Centre of the charge distribution of the rotated orbital

$$\langle r_{si} \rangle = \frac{L_s}{2\pi} \operatorname{Im} \ln z_{si}$$

R.Resta, Phys. Rev. Lett., **82** 370 (1999); G.Bergold et al, Phys. Rev. B, **61** 10041 (2000)

Wannier Centers

For a generalised 3D box h, for each maximally localised Wannier orbital

$$z_{si} = \det \mathbf{h} \int d\mathbf{r} \ e^{i\mathbf{k}_s \cdot \mathbf{r}} |\psi_i(\mathbf{r})|^2 \qquad \mathbf{r}_{si} = -\sum_t \frac{\mathbf{h}_{st}}{2\pi} \operatorname{Im} \ln z_{ti}$$

Molecular dipole moment from Wannier centres

$$\mu_s^W = e \sum_i \mathbf{r}_{si} = -e \sum_i \sum_t \frac{\mathbf{h}_{st}}{2\pi} \operatorname{Im} \ln z_{ti} = -e \sum_t \frac{\mathbf{h}_{st}}{2\pi} \operatorname{Im} \ln \prod_i z_{ti}$$

IR spectra from dipole moment autocorrelation function

$$\alpha(\omega) = \frac{4\pi \ \omega \ \tanh(\beta \hbar \omega/2)}{\hbar n(\omega) cV} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \langle P(t) \cdot P(0) \rangle$$

COFFEE BREAK