G(A)PW Electronic

Structure Theory

Thomas D. Kühne
Chair of Theoretical Chemistry
Dynamics of Condensed Matter

UNIVERSITÄT PADERBORN
Die Universität der Informationsgesellschaft

CP2K: The Swiss Army Knife of Molecular Simulations

- Static Calculations

Energy \& Structure Optimization
Properties: NMR, EPR \& XAS

- Sampling Techniques

MC \& MD
Ehrenfest Dynamics
Accelerated FES: Metadynamics

- Energy \& Force Methods

Quickstep: PP-DFT (GPW)
Semiempirical QC \& TB Methods
Classical Molecular Mechanics
Embedding Methods (QM/MM)

CP2K: The Swiss Army Knife of Molecular Simulations

- Static Calculations

Energy \& Structure Optimization
Properties: NMR, EPR \& XAS

- Sampling Techniques

MC \& MD
Ehrenfest Dynamics
Accelerated FES: Metadynamics

- Energy \& Force Methods

Quickstep: PP-DFT (GPW)
Semiempirical QC \& TB Methods
Classical Molecular Mechanics
Embedding Methods (QM/MM)

Outline

渻 Density Functional Theory and the KS formalism
㴆 Gaussian and Plane Wave method（GPW）
對 Basis sets and pseudo potentials
沙 Gaussian Augmented Plane Wave method（GAPW）
垱 Orbital Transformations（OT）
沙 Diagonalisation and Mixing
澲 Metals

Density Functional Theory

Why DFT？

漛 Explicit inclusion of electronic structure
帚 Predicable accuracy（unlike empirical approaches，parameter free）
洋 Knowledge of electronic structure gives access to evaluation of many observables

溇 Better scaling compared to many quantum chemistry approaches
Achievable improvements：development of algorithms and functionals
large systems，condensed matter，environment effects，first principle MD

Hohenberg-Kohn Theorems

Theorem I

Given a potential, one obtains the wave functions via Schrödinger equation

$$
\begin{gathered}
V_{\mathrm{ext}}(\mathbf{r}, \mathbf{R}) \Rightarrow H(\mathbf{r}, \mathbf{R})=T(\mathbf{r})+V_{\mathrm{ext}}(\mathbf{r}, \mathbf{R})+V_{\mathrm{ee}}(\mathbf{r}) \\
H(\mathbf{r}, \mathbf{R}) \Psi(\mathbf{r}, \mathbf{R})=E(\mathbf{R}) \Psi(\mathbf{r}, \mathbf{R})
\end{gathered}
$$

䲞 The density is the probability distribution of the wave functions

$$
n(\mathbf{r}) \Leftrightarrow V_{\text {ext }}(\mathbf{r}, \mathbf{R})
$$

the potential and hence also the total energy are unique functional of the electronic density $n(r)$

Hohenberg－Kohn Total Energy

Theorem II：The total energy is variational

$$
E[n] \geq E\left[n_{\mathrm{GS}}\right]
$$

$$
E_{\text {tot }}[n]=E_{\text {kin }}[n]+E_{\text {ext }}[n]+E_{\mathrm{H}}[n]+E_{\mathrm{xc}}[n]
$$

漁 $E_{\text {kin }}$ QM kinetic energy of electron（TF）
垭 Eext energy due to external potential
溇 E_{H} classical Hartree repulsion
燐 $E_{x c}$ non classical Coulomb energy：el．correlation

Kohn-Sham Energy Functional

Electronic density

$$
n(\mathbf{r})=\sum_{i} f_{i}\left|\psi_{i}(\mathbf{r})\right|^{2}
$$

Kinetic energy of non interacting electrons

$$
T_{\mathrm{s}}[n]=\sum_{i} f_{i}\left\langle\psi_{i}(\mathbf{r})\right|-\frac{1}{2} \nabla^{2}\left|\psi_{i}(\mathbf{r})\right\rangle
$$

Electronic interaction with the external potential

$$
E_{\mathrm{ext}}[n]=\int_{r} n(\mathbf{r}) V_{\mathrm{ext}}(\mathbf{r}) d \mathbf{r} \quad V_{\mathrm{ext}}(\mathbf{r})=\sum_{I}-\frac{Z_{I}}{\left|\mathbf{r}-\mathbf{R}_{I}\right|}
$$

Exact solution

$$
\Psi_{s}=\frac{1}{\sqrt{N!}} \operatorname{det}\left[\psi_{1} \psi_{2} \psi_{3} \ldots \psi_{N}\right]
$$

Kohn-Sham Energy Functional

Classical e-e repulsion

$$
J[n]=\frac{1}{2} \int_{\mathbf{r}} \int_{\mathbf{r}^{\prime}} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}=\frac{1}{2} \int_{\mathbf{r}} n(\mathbf{r}) V_{\mathrm{H}}(\mathbf{r}) d \mathbf{r}
$$

Kohn-Sham functional

$$
\begin{aligned}
& E_{\mathrm{KS}}[n]=T_{\mathrm{s}}[n]+E_{\mathrm{ext}}[n]+J[n]+E_{\mathrm{XC}}[n] \\
& E_{\mathrm{XC}}[n]=E_{\mathrm{kin}}[n]-T_{\mathrm{s}}[n]+\underbrace{E_{e e}[n]-J[n]}_{\text {non-classical part }}
\end{aligned}
$$

Kohn-Sham Equations

Orthonormality constraint

$$
\Omega_{\mathrm{KS}}\left[\psi_{i}\right]=E_{\mathrm{KS}}[n]-\underbrace{\sum_{i j} \epsilon_{i j} \int \psi_{i}^{*}(\mathbf{r}) \psi_{j}(\mathbf{r}) d \mathbf{r}}_{\text {Lagrange multipliers }}
$$

Variational search in the space of orbitals $\quad \frac{\delta \Omega_{\mathrm{KS}}\left[\psi_{i}\right]}{\delta \psi_{i}^{*}}=0$

$$
\begin{gathered}
H_{\mathrm{KS}} \psi_{i}=\left[-\frac{1}{2} \nabla^{2}+V_{\mathrm{KS}}\right] \psi_{i}=\sum_{i j} \epsilon_{i j} \psi_{j} \\
V_{\mathrm{KS}}(\mathbf{r})=V_{\mathrm{ext}}(\mathbf{r})+V_{\mathrm{H}}(\mathbf{r})+V_{\mathrm{XC}}(\mathbf{r})
\end{gathered}
$$

Kohn－Sham Equations

ϵ_{ij} diagonal

$$
\left[-\frac{1}{2} \nabla^{2}+V_{\mathrm{KS}}(\mathbf{r})\right] \psi_{i}(\mathbf{r})=\epsilon_{i} \psi_{i}(\mathbf{r})
$$

粎 KS equations looking like Schrödinger equations
韧 coupled and highly non linear
粽 Self consistent solution required
㑇 ϵ and ψ are help variables
静 KS scheme in principle exact（ $E_{x c}$ ？）

Self－Consistency

愛 Generate a starting density $\Rightarrow \mathrm{n}^{\text {init }}$
稳 Generate the KS potential $\Rightarrow \mathrm{V}_{\text {ks }}{ }^{\text {init }}$
潾 Solve the KS equations $\Rightarrow \epsilon, \psi$
業 Calculate the new density $\Rightarrow n^{1}$
举 New KS potential $\Rightarrow V_{\text {Ks }}{ }^{1}$

until self－consistency to required precision

Local Density Approximation

Uniform electron gas

$$
\begin{gathered}
E_{\mathrm{xc}}^{\mathrm{LDA}}[n]=\int n(\mathbf{r}) \varepsilon_{\mathrm{xc}}(n) d \mathbf{r} \\
V_{\mathrm{xc}}^{\mathrm{LDA}}(\mathbf{r})=\frac{\delta E_{\mathrm{xc}}^{\mathrm{LDA}}[n]}{\delta n(\mathbf{r})}=\varepsilon_{\mathrm{xc}}(n(\mathbf{r}))+n(\mathbf{r}) \frac{\partial \varepsilon_{\mathrm{xc}}(n)}{\partial n}
\end{gathered}
$$

Two contributions

Applicable with slow-varying densities

Generalized Gradient Approx．

Gradient expansion

$$
E_{\mathrm{xc}}^{\mathrm{GGA}}[n]=\int n(\mathbf{r}) \varepsilon_{\mathrm{xc}}(n) F_{\mathrm{xc}}\left[n, \nabla n, \nabla^{2} n, \ldots\right] d \mathbf{r}
$$

GGA derivation

栄 Explicit form not known
猃 Theoretical approach：by fulfilling formal conditions as sum rules，long range decay，scaling rules，high／low density limits，etc．

誈急 Fit parameters to experimental results（mol．database）

CP2K Overview

栄 Fortran95，1＇000＇000 lines of code，rapid development
漁 Freely available，open source，GNU General Public License
㴆 Community Developers Platform（UZH，IBM Research，ETHZ，PNL，LLNL，PSI，U Bochum， EPCC UK，．．．．．）

菐 User community through Google groups
缌 MPI and OpenMP parallelisation，CUDA C extensions ：porting on＞100＇000 cores and to GPUs楒 Quality control：automatic regression and memory leak（＞2000）

黄 Force Methods：KS／OF DFT（vdw），Hybrid，MP2，RPA，Classical Force Fields，QM／MM，DFTB， semi－empirical，mixed

橧 Sampling Methods：GeoOpt，CellOpt，Molecular Dynamics，Ehrenfest MD，FES and PES tools （Metadynamics），Monte Carlo，PIMD

舜 Properties and spectroscopy（vibrational，IR，TDDFT，NMR，EPR，NEXAFS，Raman．．．）
善 External Library：Lapack／BLAS，ScaLapack／BLACS，MPI，OpenMP，FFTW，libint，libxc，ELPA帚 Internal library for handling sparse matrices（DBCSR）

Basis Set Representation

Kohn-Sham formalism: matrix formulation when the wavefunction is expanded into a basis

System size $\left\{\mathrm{Nel}_{\mathrm{el}}, \mathrm{M}\right\}, \mathbf{P}[\mathrm{MxM}], \mathbf{C}[\mathrm{MxN}]$

$$
\begin{aligned}
& \psi_{i}(\mathbf{r})=\sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \\
& n(\mathbf{r})=\sum_{i} \sum_{\alpha \beta} f_{i} C_{\alpha i} C_{\beta i} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r})=\sum_{\alpha \beta} P_{\alpha \beta} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r}) \\
& \mathbf{P}=\mathbf{P S P}
\end{aligned}
$$

Density functional

$$
E\left[\left\{\psi_{i}\right\}\right]=T\left[\left\{\psi_{i}\right\}\right]+E^{\operatorname{ext}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n]+E^{I I}
$$

Matrix equation

$$
\mathbf{K}(C) \mathbf{C}=\mathbf{T}(C)+\mathbf{V}_{\mathrm{ext}}(C)+\mathbf{E}^{\mathrm{H}}(C)+\mathbf{E}^{\mathrm{xc}}(C)=\mathbf{S} \mathbf{C} \varepsilon
$$

Critical Tasks

鄁 Construction of the Kohn-Sham matrix

- Coulomb potential
- XC potential
- HF/exact exchange

洋 Fast and robust minimization of the energy functional

Efficient calculation of the density matrix and construction of the $\mathrm{MOs}(\mathrm{C})$

$\mathrm{O}(\mathrm{N})$ scaling in basis set size

Big systems: biomolecules, interfaces, material science
1000+ atoms
Long time scale: 1 ps = 1000 MD steps, processes several ps a day

Quickstep

㴆 Gaussian basis sets
确 Plane waves auxiliary basis for Coulomb integrals
漁 Regular grids and FFT
潘 Sparse matrices，efficient screening，linear scaling KS matrix computation

菐 All－electron calculations with GAPW
榺 Fast／robust direct wavefunction optimizer（OT）

Classes of Basis Sets

漁 Extended basis sets，PW ：condensed matter
湴 Localised basis sets centred at atomic positions，GTO

Idea of GPW：auxiliary basis set to represent the density

漁 Mixed（GTO＋PW）to take best of two worlds，GPW
㴆 Augmented basis set，GAPW：separated hard and soft density domains

Gaussian Basis Sets

- good results already for small basis sets
- correspondence to the intuitive chemical picture
- all-electron description
- can be tuned for each application (and even each atom)
- no implicit periodicity
- non-orthogonal
- depend on the atomic positions (Pulay forces)
- basis set superposition error (BSSE)
- systematic improvement is less straightforward
- over-completeness causes linear dependencies

Plane Waves Basis Sets

- orthogonal
- independent of the atomic positions (no Pulay forces)
- no basis set superposition error (BSSE)
- systematic improvement simply by increasing the cutoff
- implicit periodicity
- no selective tuning possible
- large number of basis functions is needed
- pseudo potentials are needed
- chemical information not directly accessible

GPW Ingredients

linear scaling KS matrix computation for GTO
兴 Gaussian basis sets（many terms analytic）

$$
\psi_{i}(\mathbf{r})=\sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \quad \phi_{\alpha}(\mathbf{r})=\sum_{m} d_{m \alpha} g_{m}(\mathbf{r}) \quad g_{m}(\mathbf{r})=x^{m_{x}} y^{m_{y}} z^{m_{z}} e^{-\alpha_{m} r^{2}}
$$

检 Pseudo potentials
帚 Plane waves auxiliary basis for Coulomb integrals
检 Regular grids and FFT for the density
諩 Sparse matrices（KS and P ）
业 Efficient screening

Gaussian Basis Set

绝 Localised, atom-position dependent GTO basis

$$
\varphi_{\mu}(\mathbf{r})=\sum_{m} d_{m \mu} g_{m}(\mathbf{r})
$$

彩 Expansion of the density using the density matrix

$$
n(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}^{*}(\mathbf{r})
$$

Operator matrices are sparse

Analytic Integrals

Cartesian Gaussian

$$
\begin{gathered}
g(\mathbf{r}, \mathbf{n}, \eta, \mathbf{R})=\left(x-R_{x}\right)^{n_{x}}\left(y-R_{y}\right)^{n_{y}}\left(z-R_{z}\right)^{n_{z}} e^{-\eta(\mathbf{r}-\mathbf{R})^{2}} \\
l=n_{x}+n_{y}+n_{z} \quad(l+1)(l+2) / 2
\end{gathered}
$$

Differential relations

$$
\left.\left.\left.\left.\left.\left.\frac{\partial}{\partial R_{i}} \right\rvert\, \mathbf{n}\right)=2 \eta \mid \mathbf{n}+\mathbf{1}_{i}\right)-n_{i} \mid \mathbf{n}-\mathbf{1}_{i}\right) \left.\quad \frac{\partial}{\partial R_{i}} \right\rvert\, \mathbf{n}\right) \left.=-\frac{\partial}{\partial r_{i}} \right\rvert\, \mathbf{n}\right)
$$

Obara-Saika recursion relations

$$
\left(\mathbf{0}_{a}|\mathcal{O}(\mathbf{r})| \mathbf{0}_{b}\right) \quad\left(\mathbf{a}+\mathbf{1}_{i}|\mathcal{O}(\mathbf{r})| \mathbf{b}\right)
$$

O-S Recursion Relations

Invariance of integrals

$$
\frac{\partial}{\partial r_{i}}(\mathbf{a}|\mathcal{O}(r)| \mathbf{b})=0
$$

Shift of angular momentum

$$
\left(\mathbf{a}|\mathcal{O}(r)| \mathbf{b}+\mathbf{1}_{i}\right)=\left(\mathbf{a}+\mathbf{1}_{i}|\mathcal{O}(r)| \mathbf{b}\right)+\left(A_{i}-B_{i}\right)(\mathbf{a}|\mathcal{O}(r)| \mathbf{b})
$$

Overlap

$$
\begin{gathered}
\left(\mathbf{0}_{a} \mid \mathbf{0}_{b}\right)=\left(\frac{\pi}{\alpha+\beta}\right)^{3 / 2} \exp \left[-\xi(\mathbf{A}-\mathbf{B})^{2}\right] \quad \xi=\frac{\alpha \beta}{\alpha+\beta} \\
\left(\mathbf{a}+\mathbf{1}_{i} \mid \mathbf{b}\right)=\left(P_{i}-A_{i}\right)(\mathbf{a} \mid \mathbf{b})+\frac{1}{2(\alpha+\beta)}\left[n_{i a}\left(\mathbf{a}-\mathbf{1}_{i} \mid \mathbf{b}\right)+n_{i b}\left(\mathbf{a} \mid \mathbf{b}-\mathbf{1}_{i}\right)\right] \\
\mathbf{P}=\frac{\alpha \mathbf{A}+\beta \mathbf{B}}{\alpha+\beta}
\end{gathered}
$$

Generate GTO Basis Set

```
&ATOM
    ELEMENT Ru
    RUN_TYPE BASIS_OPTIMIZATION
    ELE\overline{C}TRON_CONFI\overline{G}URATION CORE 4d7 5s1
    CORE [Kr]
    MAX_ANGULAR_MOMENTUM 2
    &METHOD
        METHOD_TYPE KOHN-SHAM
        &XC
            &XC_FUNCTIONAL
                    &PBE
                    &END
            &END XC_FUNCTIONAL
            &END XC
    &END METHOD
    &OPTIMIZATION
            EPS_SCF 1.e-8
    &END OPTIMIZATION
    &PP_BASIS
        NUM_GTO 6 6 6
        S_EXPONENTS 3.73260 1.83419 0.80906 0.34515
0.13836 0.04967
    P_EXPONENTS 3.73260 1.83419 0.80906 0.34515
0.13836 0.04967
    D_EXPONENTS 3.73260 1.83419 0.80906 0.34515
0.13836 0.04967
    EPS_EIGENVALUE 1.E-14
    &END PP_BASIS
```

```
    &POTENTIAL
```

 &POTENTIAL
 PSEUDO_TYPE GTH
 PSEUDO_TYPE GTH
 >H_PÖTENTIAL
 >H_PÖTENTIAL
 1 0 7
 1 0 7
 0.61211332 1 5.04489332
 0.61211332 1 5.04489332
 3
 3
 0.6421504 2 4.625563-1.8033490
 0.6421504 2 4.625563-1.8033490
 2.32811359
 2.32811359
 0.6793665 2 3.233952-2.42101064
 0.6793665 2 3.233952-2.42101064
 2.86457842
 2.86457842
 0.3805972 2 -15.5316 13.58045054
 0.3805972 2 -15.5316 13.58045054
 -15.39878349
 -15.39878349
 &END GTH_POTENTIAL
 &END GTH_POTENTIAL
 CONFINEMENT
 CONFINEMENT
 0.5 20.00
 0.5 20.00
 4 . 5
 4 . 5
 \&END POTENTIAL
\&END POTENTIAL
\&POWELL
\&POWELL
ACCURACY 1.e-8
ACCURACY 1.e-8
STEP_SIZE 1.0
STEP_SIZE 1.0
\&END POWELL
\&END POWELL
\&END ATOM

```
&END ATOM
```


GTO Basis Sets in CP2K

奉 The repository contains several GTO libraries

cp2k/data/
ALL_BASIS_SETS
ALL_POTENTIALS
BASIS_ADMM
BASIS_ADMM_MOLOPT
BASIS_MOLOPT
BASIS_RI_cc-TZ

HFX_BASIS
HF_POTENTIALS
MM_POTENTIAL
NLCC_POTENTIALS
POTENTIAL
README

```
dftd3.dat
nm12_parameters.xml
rVV10_kernel_table.dat
t_c_g.dat
t_sh_p_s_c.dat
vdW_kernel_table.dat
```

> Tools for the optimisation of GTO basis sets are available in cp2k, based on atomic and molecular electronic structure calculations

Basis Set Library

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

```
O SZV-GTH
1
201411
    8.3043855492 0.1510165999 -0.0995679273
    2.4579484191 -0.0393195364-0.3011422449
    0.7597373434 -0.6971724029-0.4750857083
    0.2136388632-0.3841133622-0.3798777957
#
O DZVP-GTH
2
201422
    8.3043855492 0.1510165999 0.0000000000-0.0995679273 0.0000000000
    2.4579484191 -0.0393195364 0.0000000000 -0.3011422449 0.0000000000
    0.7597373434 -0.6971724029 0.0000000000 -0.4750857083 0.0000000000
    0.2136388632-0.3841133622 1.0000000000 -0.3798777957 1.00000000000
32211
        1.1850000000 1.0000000000
#
O TZVP-GTH
2
20153 3
    10.2674419938 0.0989598460 0.0000000000 0.00000000000 -0.0595856940 0.0000000000 0.0000000000
    3.7480495696 0.1041178339 0.0000000000 0.0000000000-0.1875649045 0.0000000000 0.0000000000
    1.3308337704 -0.3808255700 0.0000000000 0.0000000000 -0.3700707718 0.00000000000 0.00000000000
    0.4556802254 -0.6232449802 1.0000000000 0.0000000000 -0.4204922615 1.00000000000 0.00000000000
    0.1462920596-0.1677863491 0.0000000000 1.0000000000 -0.2313901687 0.0000000000 1.0000000000
32211
    1.1850000000 1.0000000000
```


Basis Set Library

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

```
O SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q6
1
201711
    12.015954705512-0.060190841200 0.036543638800
    5.108150287385-0.129597923300 0.120927648700
    2.048398039874 0.118175889400 0.251093670300
    0.832381575582 0.462964485000 0.352639910300
    0.352316246455 0.450353782600 0.294708645200
    0.142977330880 0.092715833600 0.173039869300
    0.046760918300-0.000255945800 0.009726110600
#
O DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q6
1
2027221
    12.015954705512-0.060190841200 0.065738617900 0.036543638800-0.034210557400 0.014807054400
    5.108150287385-0.129597923300 0.110885902200 0.120927648700-0.120619770900 0.068186159300
    2.048398039874 0.118175889400-0.053732406400 0.251093670300-0.213719464600 0.290576499200
    0.832381575582 0.462964485000-0.572670666200 0.352639910300-0.473674858400 1.0633444189500
    0.352316246455 0.450353782600 0.186760006700 0.294708645200 0.484848376400 0.307656114200
    0.142977330880 0.092715833600 0.387201458600 0.173039869300 0.717465919700 0.318346834400
    0.046760918300-0.000255945800 0.003825849600 0.009726110600 0.032498979400-0.005771736600
#
O TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q6
1
2027331
    12.015954705512-0.060190841200 0.065738617900 0.041006765400 0.036543638800-0.034210557400-0.000592640200 0.014807054400
    5.108150287385-0.129597923300 0.110885902200 0.080644802300 0.120927648700-0.120619770900 0.0098523449400 0.068186159300
    2.048398039874 0.118175889400-0.053732406400-0.067639801700 0.251093670300-0.213719464600 0.001286509800 0.290576499200
    0.832381575582 0.462964485000-0.572670666200-0.435078312800 0.352639910300-0.473674858400-0.021872639500 1.0633444189500
    0.352316246455 0.450353782600 0.186760006700 0.722792798300 0.294708645200 0.484848376400 0.530504764700 0.307656114200
    0.142977330880 0.092715833600 0.387201458600-0.521378340700 0.173039869300 0.717465919700-0.436184043700 0.318346834400
    0.046760918300-0.000255945800 0.003825849600 0.175643142900 0.009726110600 0.032498979400 0.073329259500-0.005771736600
```


Basis Set Library

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

```
O 6-31Gx 6-31G*
4
1006 1
    5484.67170000 0.00183110
    825.23495000 0.01395010
    188.04696000 0.06844510
    52.96450000 0.23271430
    16.89757000 0.47019300
    5.79963530 0.35852090
101 1 1 1 1
    15.53961600 -0.11077750 0.07087430
    3.59993360 -0.14802630 0.33975280
    1.01376180 1.13076700 0.72715860
1 0 1 1 1 1
    0.27000580
12211
    0.80000000-1.00000000
#
O 6-31Gxx 6-31G**
4
10061
    5484.67170000 0.00183110
    825.23495000 0.01395010
    188.04696000 0.06844510
    52.96450000 0.23271430
    16.89757000 0.47019300
    5.79963530 0.35852090
101311
    15.53961600 -0.11077750 0.07087430
    3.59993360 -0.14802630 0.33975280
        1.01376180 1.13076700 0.72715860
1 0 1 1 1 1
    0.27000580

\section*{Basis Set Superposition Error}

BSSE in liquid water

Binding energy in water (BSSE)


\section*{Pseudopotentials}

垱 Core electrons are eliminated \(Z_{v}=Z-Z_{\text {core }}\)浚 Atomic 1s： \(\exp \{-\mathrm{Zr}\}\)
㐘 Smooth nodeless pseudo－wfn close to nuclei
麊 Bare Coulomb replaced by screened Coulomb


商 Inclusion of relativistic effects
矄Transferable
㭏 Angular dependent potentials：
Pt p peaked at \(3.9 \AA\) \(s\) peaked at \(2.4 \AA\)
d peaked at \(1.3 \AA\)

\section*{Generate Pseudopotentials}

Reference
\[
\left(-\frac{1}{2} \nabla^{2}+V_{\mathrm{H}}[n](r)+V_{\mathrm{xc}}[n](r)+V_{\mathrm{nuc}}(r)\right) \psi_{l}(\mathbf{r})=\epsilon_{l} \psi_{l}(\mathbf{r})
\]

PP
\[
\left(-\frac{1}{2} \nabla^{2}+V_{\mathrm{H}}\left[n_{\mathrm{val}}\right](r)+V_{\mathrm{xc}}\left[n_{\mathrm{val}}\right](r)+V_{\mathrm{pp}}^{l}(r)\right) \tilde{\psi}_{l}(\mathbf{r})=\epsilon_{l} \tilde{\psi}_{l}(\mathbf{r})
\]

Normconserving
\[
\int\left|\tilde{\psi}_{l}(\mathbf{r})\right|^{2} d \mathbf{r}=1
\]

Separable: local, nonlocal
\[
V_{\mathrm{pp}}(\mathbf{r})=V_{\mathrm{loc}}(|\mathbf{r}|)+\sum_{l m}^{L_{\max }}\left|p_{l m}\right\rangle \nu_{l}\left\langle p_{l m}\right|
\]

\section*{GTH Pseudopotentials}

业怂 Norm－conserving，separable，dual－space
检 Local PP：short－range and long－range terms
\[
\begin{gathered}
V_{\mathrm{loc}}^{\mathrm{PP}}(r)=\sum_{i=1}^{4} C_{i}^{\mathrm{PP}}\left(\sqrt{(2)} \alpha^{\mathrm{PP}} r\right)^{(2 i-2)} e^{-\left(\alpha^{\mathrm{PP}} r\right)^{2}}-\frac{Z_{\mathrm{ion}}}{r} \operatorname{erf}\left(\alpha^{\mathrm{PP}} r\right) \\
\text { analytically }
\end{gathered}
\]

諘 Non－Local PP with Gaussian type projectors
\[
\begin{gathered}
V_{\mathrm{nl}}^{\mathrm{PP}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{l m} \sum_{i j}\left\langle\mathbf{r} \mid p_{i}^{l m}\right\rangle h_{i j}^{l}\left\langle p_{j}^{l m} \mid \mathbf{r}^{\prime}\right\rangle \\
\left\langle\mathbf{r} \mid p_{i}^{l m}\right\rangle=N_{i}^{l} Y^{l m}(\hat{r}) r^{(l+2 i-2)} e^{-\frac{1}{2}\left(\frac{r}{r_{l}}\right)^{2}}
\end{gathered}
\]

\section*{Pseudopotential Integrals}

Local PP (SR): 3-center terms
\[
\begin{array}{r}
\left(\mathbf{a}+\mathbf{1}_{i}|\mathbf{c}| \mathbf{b}\right)=H_{i}(\mathbf{a}|\mathbf{c}| \mathbf{b}) \\
\\
+\frac{1}{2(\alpha+\beta+\gamma)}\left[n_{i a}\left(\mathbf{a}-\mathbf{1}_{i}|\mathbf{c}| \mathbf{b}\right)+n_{i b}\left(\mathbf{a}|\mathbf{c}| \mathbf{b}-\mathbf{1}_{i}\right)\right. \\
\left.+n_{i c}\left[\left(\mathbf{a}+\mathbf{1}_{i}\left|\mathbf{c}-\mathbf{2}_{i}\right| \mathbf{b}\right)+\left(A_{i}-C_{i}\right)\left(\mathbf{a}\left|\mathbf{c}-\mathbf{2}_{i}\right| \mathbf{b}\right)\right]\right] \\
\quad \mathbf{H}=\frac{\beta \mathbf{B}+\gamma \mathbf{C}-(\beta+\gamma) \mathbf{A}}{\alpha+\beta+\gamma}
\end{array}
\]
\[
\left(\mathbf{0}_{a}\left|\mathbf{0}_{c}\right| \mathbf{0}_{b}\right)=\left(\frac{\alpha+\beta}{\alpha+\beta+\gamma}\right)^{3 / 2} \exp \left[-\gamma \frac{\alpha+\beta}{\alpha+\beta+\gamma}(\mathbf{P}-\mathbf{C})^{2}\right](\mathbf{a} \mid \mathbf{b})
\]

\section*{GTH PP Generation for O}
\&ATOM
```

ELEMENT 0
RUN_TYPE PSEUDOPOTENTIAL_OPTIMIZATION
ELECTRON_CONFIGURATION [He] 2s2 2p4
CORE [He]
MAX_ANGULAR_MOMENTUM 2
COULOMB_INTEGRALS ANALYTIC
EXCHANGE_INTEGRALS ANALYTIC
\&METHOD
METHOD_TYPE KOHN-SHAM
RELATIVIISTIC DKH(2)
\&XC
\&XC_FUNCTIONAL PBEO
\&END XC_FUNCTIONAL
\&END XC
\&END METHOD
\&OPTIMIZATION
EPS_SCF 1.e-10
\&END
\&PRINT
\&BASIS_SET
\&END
\&END

```

\section*{Pseudopotential Library}

\section*{GTH_POTENTIALS}
\[
\begin{array}{ccc}
N_{\mathrm{el}}(s) & N_{\mathrm{el}}(p) & N_{\mathrm{el}}(d) \\
r_{\mathrm{loc}}^{\mathrm{PP}} & N_{C} & C_{1}^{\mathrm{PP}} \quad \ldots \\
N_{p} & & C_{N_{C}}^{\mathrm{PP}} \\
r_{1} & n_{\mathrm{nl}}^{1} & \left\{h_{i j}^{1}\right\}_{i j=1 \ldots n^{1}} \\
r_{2} & n^{2} & \left\{h_{i j}^{2}\right\}_{i j=1 \ldots n^{2}}
\end{array}
\]

\section*{Few parameters}
```

C GTH-BLYP-q4
2 2
0.33806609 2 -9.13626871 1.42925956
2
0.30232223 1 9.66551228
0.28637912 0

N GTH-BLYP-q5
2 3
0.28287094 2 -12.73646720 1.95107926
2
0.25523449 1 13.67893172
0.24313253 0

```

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{lOC}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Goedecker-Teter-Hutter (GTH) pseudo potentials:
Local part:
\[
\begin{aligned}
V_{\text {loc }}^{\mathrm{PP}}(r)= & -\frac{z_{\text {ion }}}{r} \operatorname{erf}\left(\alpha^{\mathrm{PP}} r\right) \\
& +\sum_{i=1}^{4} C_{i}^{\mathrm{PP}}\left(\sqrt{2} \alpha^{\mathrm{PP}} r\right)^{2 i-2} \exp \left[-\left(\alpha^{\mathrm{PP} r}\right)^{2}\right] \\
\text { with } \alpha^{\mathrm{PP}}= & \frac{1}{\sqrt{2} r_{\text {loc }}^{\mathrm{PP}}}
\end{aligned}
\]

\section*{GPW Functional}

Goedecker-Teter-Hutter (GTH) pseudo potentials:
Local part:
\[
\begin{aligned}
V_{\mathrm{loc}}^{\mathrm{PP}}(r)= & -\frac{z_{\text {ion }}}{r} \operatorname{erf}\left(\alpha^{\mathrm{PP}} r\right) \\
& +\sum_{i=1}^{4} C_{i}^{\mathrm{PP}}\left(\sqrt{2} \alpha^{\mathrm{PP}} r\right)^{2 i-2} \exp \left[-\left(\alpha^{\mathrm{PP} r}\right)^{2}\right] \\
\text { with } \alpha^{\mathrm{PP}}= & \frac{1}{\sqrt{2} r_{\mathrm{loc}}^{\mathrm{PP}}}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Non-local part:
\[
V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\sum_{l m} \sum_{i j}\left\langle\boldsymbol{r} \mid p_{i}^{l m}\right\rangle h_{i j}^{\prime}\left\langle p_{j}^{l m} \mid \boldsymbol{r}^{\prime}\right\rangle
\]
with the Gaussian-type projectors
\[
\left\langle\boldsymbol{r} \mid p_{i}^{\prime m}\right\rangle=N_{i}^{\prime} Y^{\prime m}(\hat{r}) r^{\prime+2 i-2} \exp \left[-\frac{1}{2}\left(\frac{r}{r_{l}}\right)^{2}\right]
\]

\section*{GPW Functional}

Non-local part:
\[
V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\sum_{l m} \sum_{i j}\left\langle\boldsymbol{r} \mid p_{i}^{I m}\right\rangle h_{i j}^{\prime}\left\langle p_{j}^{l m} \mid \boldsymbol{r}^{\prime}\right\rangle
\]
with the Gaussian-type projectors
\[
\left\langle\boldsymbol{r} \mid p_{i}^{\prime m}\right\rangle=N_{i}^{\prime} Y^{\prime m}(\hat{r}) r^{\prime+2 i-2} \exp \left[-\frac{1}{2}\left(\frac{r}{r_{l}}\right)^{2}\right]
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\top}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(r)\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{\mid=G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{\boldsymbol{G}}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{GPW Functional}

Gaussian and plane waves (GPW) method:
\[
\begin{aligned}
E^{\mathrm{elec}}[n]= & E^{\mathrm{T}}[n]+E^{\mathrm{V}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n] \\
= & \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right|-\frac{1}{2} \nabla^{2}\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{loc}}^{\mathrm{PP}}(\boldsymbol{r})\left|\varphi_{\nu}(\boldsymbol{r})\right\rangle+ \\
& \sum_{\mu \nu} P^{\mu \nu}\left\langle\varphi_{\mu}(\boldsymbol{r})\right| V_{\mathrm{nl}}^{\mathrm{PP}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\left|\varphi_{\nu}\left(\boldsymbol{r}^{\prime}\right)\right\rangle+ \\
& 4 \pi \Omega \sum_{|\boldsymbol{G}|<G_{\mathrm{C}}} \frac{\tilde{n}^{*}(\boldsymbol{G}) \tilde{n}(\boldsymbol{G})}{\boldsymbol{G}^{2}}+ \\
& \int \tilde{n}(\boldsymbol{r}) \varepsilon_{\mathrm{XC}}[\tilde{n}] d \boldsymbol{r}
\end{aligned}
\]

\section*{Periodic Hartree Potential via FFT}
\[
\begin{gathered}
\boldsymbol{P} \rightarrow \rho(\mathbf{R}) \underbrace{\stackrel{\mathrm{FFT}}{\longrightarrow} \rho(\mathbf{G}) \rightarrow V_{\mathrm{H}}(\mathbf{G})=\frac{\rho(\mathbf{G})}{\mathbf{G}^{2}} \stackrel{\mathrm{FFT}}{\longrightarrow}}_{\mathcal{O}(n \log n)} V_{\mathrm{H}}(\mathbf{R}) \rightarrow \boldsymbol{V} \\
\rho(\mathbf{R})=\sum_{\mu \nu} \boldsymbol{P}_{\mu \nu} \chi_{\mu}(\mathbf{R}) \chi_{\nu}(\mathbf{R})=\sum_{\mu \nu} \boldsymbol{P}_{\mu \nu} \bar{\chi}_{\mu \nu}(\mathbf{R}) \\
\boldsymbol{V}_{\mu \nu}=\sum_{\mathbf{R}} \boldsymbol{V}(\mathbf{R}) \chi_{\mu}(\mathbf{R}) \chi_{\nu}(\mathbf{R})=\sum_{\mathbf{R}} \boldsymbol{V}(\mathbf{R}) \bar{\chi}_{\mu \nu}(\mathbf{R})
\end{gathered}
\]

Efficient screening of sums using \(\bar{\chi}_{\mu \nu}(\mathbf{R})\).

\section*{Screening}
- Always work with primitive Gaussians
- Analytic integrals \(\rightarrow\) distance screening with \(R=A-B\)

Overlap \(\quad S_{\alpha \beta} \quad \varphi_{\alpha}(r-A) \leftrightarrow \varphi_{\beta}(r-B)\)
\(\downarrow \quad\) sparsity pattern
\[
T_{\alpha \beta}
\]
- Density on the real space grid
\[
\begin{gathered}
\sum_{\alpha \beta} P_{\alpha \beta} \varphi_{\alpha}(R) \varphi_{\beta}(R) \xrightarrow{\text { FFT }} \tilde{\rho}(G) \\
\downarrow \text { overlap screening }
\end{gathered}
\]
\(P_{\alpha \beta}\) is only needed with \(S_{\alpha \beta}\) sparsity pattern
- \(\varphi_{\alpha \beta}(R) \neq 0\) distance (radial) screening

\section*{Screening}
- All individual screening thresholds can be controlled by EPS_DEFAULT

CP2K_INPUT / FORCE_EVAL / DFT / QS
- Problems associated with thresholds
- Failure in Cholesky decomposition of overlap matrix
- Combination of basis set condition number and too big EPS_DEFAULT
- Inaccurate charge on real space grid
- Too low PW cutoff and/or too big EPS_DEFAULT (extend of \(\varphi_{\alpha \beta}\) )

\section*{GPW Functional}
\[
\begin{aligned}
E^{\mathrm{el}}[n] & =\sum_{\mu \nu} P_{\mu \nu}\left\langle\varphi_{\mu}\right|-\frac{1}{2} \nabla^{2}+V_{\mathrm{loc}}^{\mathrm{SR}}+V_{\mathrm{nl}}\left|\varphi_{\nu}\right\rangle \\
& +2 \pi \Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\text {tot }}^{*}(\mathbf{G}) \tilde{n}_{\mathrm{tot}}(\mathbf{G})}{\mathbf{G}^{2}}+\sum_{\mathbf{R}} \tilde{n}(\mathbf{R}) V^{\mathrm{XC}}(\mathbf{R}) \\
& =\sum_{\mu \nu} P_{\mu \nu}\left(\left\langle\varphi_{\mu}\right|-\frac{1}{2} \nabla^{2}+V^{\mathrm{ext}}\left|\varphi_{\nu}\right\rangle+\sum_{\mathbf{R}} V_{\mu \nu}^{\mathrm{HXC}}(\mathbf{R}) \varphi_{\mu \nu}^{\prime}(\mathbf{R})\right)
\end{aligned}
\]

Linear scaling KS matrix construction

\section*{External Potential}
- Long range part (All electron and pseudopotentials) \(V_{l}(\mathbf{r})=-Z / r \quad r \longrightarrow \infty\)
- Short range part (only pseudopotentials)
\[
\left(\alpha\left|V_{n l}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right| \beta\right)=(\alpha \mid p) V_{p}(p \mid \beta)
\]

Auxilliary core potential:
\[
\begin{aligned}
V_{\text {core }}(\mathbf{r}) & =-\frac{Z}{r} \operatorname{erf}\left[-r / R_{c}\right] \\
V_{\text {core }}(\mathbf{r}) & =\int \frac{\rho_{c}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime} \\
\rho_{c}(\mathbf{r}) & =-\frac{Z}{R_{c}^{3}} \pi^{-3 / 2} \exp \left[-\left(r / R_{c}\right)^{2}\right]
\end{aligned}
\]

\section*{External Potential}
\[
\begin{aligned}
& V_{l}(\mathbf{r})=V_{l}(\mathbf{r})-V_{\text {core }}(\mathbf{r})+V_{\text {core }}(\mathbf{r}) \\
& V_{l}(\mathbf{r})=V_{s}(\mathbf{r})+V_{\text {core }}(\mathbf{r})
\end{aligned}
\]

Special case of pseudopotentials used in Quickstep
\[
\begin{aligned}
& V_{l}(\mathbf{r})=-\frac{Z}{r} \operatorname{erf}\left[-r / R_{c}\right]+\left(C_{1}+C_{2} r^{2}+C_{3} r^{4}\right) \exp \left[-\left(r / r_{c l}\right)^{2}\right] \\
& V_{l}(\mathbf{r})=\left(C_{1}+C_{2} r^{2}+C_{3} r^{4}\right) \exp \left[-\left(r / r_{c l}\right)^{2}\right]+V_{\text {core }}(\mathbf{r})
\end{aligned}
\]

\section*{Hartree Potential}

Electrostatic energy:
\[
\begin{aligned}
& E_{e s}=\frac{1}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\int V_{\text {core }}(\mathbf{r}) \rho(\mathbf{r}) d \mathbf{r}+\frac{1}{2} \sum_{A \neq B} \frac{Z_{A} Z_{B}}{\left|\mathbf{R}_{A}-\mathbf{R}_{B}\right|} \\
&=\frac{1}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\iint \frac{\rho_{c}(\mathbf{r}) \rho(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\frac{1}{2} \sum_{A \neq B} \frac{Z_{A} Z_{B}}{\left|\mathbf{R}_{A}-\mathbf{R}_{B}\right|} \\
&=\frac{1}{2} \iint \frac{\rho_{t o t}(\mathbf{r}) \rho_{t o t}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}-\frac{1}{2} \iint \frac{\rho_{c}(\mathbf{r}) \rho_{c}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\frac{1}{2} \sum_{A \neq B} \frac{Z_{A} Z_{B}}{\left|\mathbf{R}_{A}-\mathbf{R}_{B}\right|} \\
&=\frac{1}{2} \iint \frac{\rho_{t o t}(\mathbf{r}) \rho_{t o t}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+E_{\text {overlap }}-E_{\text {self }} \\
& \rho_{t o t}(\mathbf{r})=\rho(\mathbf{r})+\rho_{c}(\mathbf{r})
\end{aligned}
\]

\section*{Hartree Potential}
\[
\begin{aligned}
E_{\text {es }}= & \frac{1}{2} \iint \frac{\rho_{t o t}(\mathrm{r}) \rho_{t o t}\left(\mathrm{r}^{\prime}\right)}{\left|\mathbf{r}-\mathrm{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \\
& +\frac{1}{2} \sum_{A \neq B} \frac{Z_{A} Z_{B}}{R_{A B}} \operatorname{erfc}\left[\frac{R_{A B}}{R_{c}}\right]-\sum_{A} \frac{1}{\sqrt{2 \pi}} \frac{Z_{A}^{2}}{R_{C}}
\end{aligned}
\]
- Long range term ( \(\rho_{t o t}(\mathbf{r})\) )
- Short range pair potential term (erfc)
- Self energy term

\section*{Auxiliary Basis Set}

輥 Long range term : Non-local Coulomb
\[
E^{\mathrm{H}}\left[n_{\mathrm{tot}}\right]=\frac{1}{2} \iint \frac{n_{\mathrm{tot}}(\mathbf{r}) n_{\mathrm{tot}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}
\]

洋 Orthogonal, unbiased, naturally periodic PW basis
\[
\tilde{n}(\mathbf{r})=\frac{1}{\Omega} \sum_{\mathbf{G}} \tilde{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}
\]

Linear scaling solution of the Poisson equation
\[
E^{\mathrm{H}}\left[n_{\mathrm{tot}}\right]=2 \pi \Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\mathrm{tot}}^{*}(\mathbf{G}) \tilde{n}_{\mathrm{tot}}(\mathbf{G})}{\mathbf{G}^{2}}
\]

\section*{Auxiliary Basis Set}

洋 Long range term : Non-local Coulomb
\[
E^{\mathrm{H}}\left[n_{\mathrm{tot}}\right]=\frac{1}{2} \iint \frac{n_{\mathrm{tot}}(\mathbf{r}) n_{\mathrm{tot}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}
\]

钚 Orthogonal, unbiased, naturally periodic PW basis
\[
\tilde{n}(\mathbf{r})=\frac{1}{\Omega} \sum_{\mathbf{G}} \tilde{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}
\]

\section*{Efficient Mapping FFT}

Linear scaling solution of the Poisson equation
\[
E^{\mathrm{H}}\left[n_{\mathrm{tot}}\right]=2 \pi \Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\mathrm{tot}}^{*}(\mathbf{G}) \tilde{n}_{\mathrm{tot}}(\mathbf{G})}{\mathbf{G}^{2}}
\]


\section*{Real-Space Integration}

Finite cutoff and simulation box define a real space grid
亚 Density collocation
\[
n(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \rightarrow \sum_{\mu \nu} P_{\mu \nu} \bar{\varphi}_{\mu \nu}(\mathbf{R})=n(\mathbf{R})
\]

\section*{Real-Space Integration}

Finite cutoff and simulation box define a real space grid
殔 Density collocation
\[
\begin{aligned}
& n(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \rightarrow \sum_{\mu \nu} P_{\mu \nu} \bar{\varphi}_{\mu \nu}(\mathbf{R})=n(\mathbf{R}) \\
& \hat{n}(\mathbf{G}) \rightarrow V_{H}(\mathbf{G})=\frac{\hat{n}(\mathbf{G})}{G^{2}} \rightarrow V_{H}(\mathbf{R}) \text { Truncation } \\
& \text { Real Space }
\end{aligned}
\]

\section*{Real－Space Integration}

Finite cutoff and simulation box define a real space grid
粆 Density collocation

\section*{Screening} Truncation
\[
\hat{n}(\mathbf{G}) \rightarrow V_{H}(\mathbf{G})=\frac{\hat{n}(\mathbf{G})}{G^{2}} \rightarrow V_{H}(\mathbf{R})
\]


Real Space


G－Space

䧻 Numerical approximation of the gradient
\[
n(\mathbf{R}) \rightarrow \nabla n(\mathbf{R})
\]
\[
v_{X C}[n](\mathbf{r}) \rightarrow V_{X C}(\mathbf{R})=\frac{\partial \epsilon_{x c}}{\partial n}(\mathbf{R})
\]

料 Real space integration
\[
H_{H X C}^{\mu \nu}=\langle\mu| V_{H X C}(\mathbf{r})|\nu\rangle \rightarrow \sum_{R} V_{H X C}(R) \varphi_{\mu \nu}^{\prime}(R)
\]

\section*{Energy Ripples}

Low density region can induce unphysical behavior of terms such \(\frac{|\nabla n|^{2}}{n^{\alpha}}\)


Small variations of the total energy as atoms move relative to the grid

\section*{Multigrids}
\[
E_{\mathrm{cut}}^{i}=\frac{E_{\mathrm{cut}}^{1}}{\alpha^{(i-1)}}, \quad i=1 . . N
\]
the exponent of Gaussian product selects the grid number of grid points is exponent-independent
\[
\sigma_{p}^{2}=1 / 2 \eta_{p}
\]

\section*{Accuracy}
=> Relative Cutoff
~30 Ry


\section*{Multigrids}
\[
E_{\mathrm{cut}}^{i}=\frac{E_{\mathrm{cut}}^{1}}{\alpha^{(i-1)}}, \quad i=1 . . N
\]
the exponent of Gaussian product selects the grid number of grid points is exponent-independent
\[
\sigma_{p}^{2}=1 / 2 \eta_{p}
\]

\section*{Accuracy}
=> Relative Cutoff
~30 Ry



\section*{CP2K DFT Input}
```

\&FORCE_EVAL
METHOD Quickstep
\&DFT
BASIS_SET_FILE_NAME GTH_BASIS_SETS
POTENTIAL_FILE_NAME GTH_POTENTIALS
LSD F
MULTIPLICITY 1
CHARGE 0
\&MGRID
CUTOFF 300
REL_CUTOFF 50
\&END MGRID
\&QS
EPS_DEFAULT 1.0E-10
\&END QS
\&SCF
MAX_SCF 50
EPS_SCF 2.00E-06
SCF_GUESS ATOMIC
\&END SCF
\&XC
\&XC_FUNCTIONAL
\&PBE
\&END PBE
\&END XC_FUNCTIONAL

```
```

 &XC_GRID
 XC_DERIV SPLINE2_smooth
 XC_SMOOTH_RHO NN10
 &END XC_GRID
 &END XC
 \&END DFT
\&SUBSYS
\&CELL
PERIODIC XYZ
ABC 8. 8. 8.
\&END CELL
\&COORD
0 0.000000 0.000000 -0.065587
H 0.000000 -0.757136 0.520545
H 0.000000 0.757136 0.520545
\&END COORD
\&KIND H
BASIS_SET DZVP-GTH-PBE
POTENTIAL GTH-PBE-qI
\&END KIND
\&KIND 0
BASIS_SET DZVP-GTH-PBE
POTENTIAL GTH-PBE-q6
\&END KIND
\&END SUBSYS
\&END FORCE_EVAL

```

\section*{Hard \＆Soft Densities}


Formaldehyde

詸 Pseudopotential \(\Rightarrow\) frozen core
㴆 Augmented PW \(\Rightarrow\) separate regions（matching at edges）
LAPW，LMTO（OK Andersen，PRB 12， 3060 （1975）
漁 Dual representation \(\Rightarrow\) localized orbitals and PW
PAW（PE Bloechl，PRB，50， 17953 （1994））

\section*{Partitioning of the Density}

\[
n=\tilde{n}+\sum_{A} n_{A}-\sum_{A} \tilde{n}_{A}
\]

\section*{Partitioning of the Density}

\[
\left.\begin{array}{c}
n=\tilde{n}+\sum_{A} n_{A}-\sum_{A} \tilde{n}_{A} \\
\left.\begin{array}{c}
n(\mathbf{r})-\tilde{n}(\mathbf{r})=0 \\
n_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})=0
\end{array}\right\} \mathbf{r} \in I \\
n(\mathbf{r})-n_{A}(\mathbf{r})=0 \\
\tilde{n}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})=0
\end{array}\right\} \mathbf{r} \in A
\]

\section*{Partitioning of the Density}

\[
\left.\begin{array}{c}
n=\tilde{n}+\sum_{A} n_{A}-\sum_{A} \tilde{n}_{A} \\
\left.\begin{array}{c}
n(\mathbf{r})-\tilde{n}(\mathbf{r})=0 \\
n_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})=0
\end{array}\right\} \mathbf{r} \in I \\
\left.\begin{array}{r}
n(\mathbf{r})-n_{A}(\mathbf{r})=0 \\
\tilde{n}(\mathbf{r})
\end{array}\right\} \quad \tilde{n}_{A}(\mathbf{r})=0
\end{array}\right\} \mathbf{r} \in A
\]
\[
n_{A}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \chi_{\mu}^{A} \chi_{\nu}^{A}
\]
\[
\tilde{n}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \tilde{\varphi}_{\mu} \tilde{\varphi}_{\nu} \rightarrow \sum_{\mathbf{G}} \hat{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{R}}
\]

Gaussian Augmented Plane Waves

\section*{Density Dependent Terms: XC}

Semi-local functional like local density approximation, generalized gradient approximation or meta-functionals

Gradient: \(\quad \nabla n(\mathbf{r})=\nabla \tilde{n}(\mathbf{r})+\sum_{A} \nabla n_{A}(\mathbf{r})-\sum_{A} \nabla \tilde{n}_{A}(\mathbf{r})\)
\[
E[n]=\int V_{l o c}(\mathbf{r}) n(\mathbf{r})=\int\left\{\tilde{V}_{l o c}(\mathbf{r})+\sum_{A} V_{l o c}^{A}(\mathbf{r})+\sum_{A} \tilde{V}_{l o c}^{A}(\mathbf{r})\right\}
\]

\(\times\left\{\tilde{n}(\mathbf{r})+\sum_{A} n_{A}(\mathbf{r})-\sum_{A} \tilde{n}_{A}(\mathbf{r})\right\} d \mathbf{r}\)

\section*{Density Dependent Terms: XC}

Semi-local functional like local density approximation, generalized gradient approximation or meta-functionals
\[
\begin{aligned}
& \text { Gradient: } \nabla n(\mathbf{r})=\nabla \tilde{n}(\mathbf{r})+\sum_{A} \nabla n_{A}(\mathbf{r})-\sum_{A} \nabla \tilde{n}_{A}(\mathbf{r}) \\
& E[n]=\int V_{l o c}(\mathbf{r}) n(\mathbf{r})=\int\left\{\tilde{V}_{l o c}(\mathbf{r})+\sum_{A} V_{l o c}^{A}(\mathbf{r})+\sum_{A} \tilde{V}_{l o c}^{A}(\mathbf{r})\right\} \\
& \left.=\int \tilde{n}(\mathbf{r})+\sum_{A} n_{A}(\mathbf{r})-\sum_{A} \tilde{n}_{A}(\mathbf{r})\right\} d \mathbf{r} \\
& =\int\left\{\tilde{V}_{l o c}(\mathbf{r}) \tilde{n}(\mathbf{r})+\sum_{A} V_{l o c}^{A}(\mathbf{r}) n_{A}(\mathbf{r})-\sum_{A} \tilde{V}_{l o c}^{A}(\mathbf{r}) \tilde{n}_{A}(\mathbf{r})\right\}
\end{aligned}
\]

\section*{Density Dependent Terms: ES}

Non local Coulomb operator


Same multipole expansion as the local densities
\[
\mathcal{Q}_{A}^{L}=\int\left\{n_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})+n_{A}^{Z}(\mathbf{r})\right\} r^{l} \mathcal{Y}_{l m}(\theta \phi) r^{2} d r \sin (\theta) d \theta d \phi
\]
\[
V\left[\tilde{n}+\mathrm{n}^{0}\right]+\sum_{A} V\left[n_{A}+n_{A}^{Z}\right]-\sum_{A} V\left[\tilde{n}_{A}+\mathrm{n}_{A}^{0}\right]
\]

\section*{Density Dependent Terms: ES}

Non local Coulomb operator


Same multipole expansion as the local densities
\[
\mathcal{Q}_{A}^{L}=\int\left\{n_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})+n_{A}^{Z}(\mathbf{r})\right\} r^{l} \mathcal{Y}_{l m}(\theta \phi) r^{2} d r \sin (\theta) d \theta d \phi
\]
\[
V\left[\tilde{n}+\mathrm{n}^{0}\right]+\sum_{A} V\left[n_{A} \nleftarrow n_{A}^{Z}\right]-\sum_{A} V\left[\tilde{n}_{A} \not \mathrm{n}_{A}^{0}\right]
\]

Interstitial region

\section*{Density Dependent Terms: ES}

Non local Coulomb operator


Same multipole expansion as the local densities
\[
\mathcal{Q}_{A}^{L}=\int\left\{n_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})+n_{A}^{Z}(\mathbf{r})\right\} r^{l} \mathcal{Y}_{l m}(\theta \phi) r^{2} d r \sin (\theta) d \theta d \phi
\]
\[
V\left[\tilde{n}-\left(n^{0}\right]+\sum_{A} V\left[n_{A}+n_{A}^{Z}\right]-\sum_{A} V\left[\tilde{n}_{A} \not n_{A}^{0}\right]\right.
\]

Atomic region

\section*{GAPW Functionals}
\[
\begin{aligned}
E_{x c}[n]= & E_{x c}[\tilde{n}]+\sum_{A} E_{x c}\left[n_{A}\right]-\sum_{A} E_{x c}\left[\tilde{n}_{A}\right] \\
E_{H}\left[n+n^{Z}\right]= & E_{H}\left[\tilde{n}+\mathrm{n}^{0}\right]+ \\
& \sum_{A} E_{H}\left[n_{A}+n_{A}^{Z}\right]-\sum_{A} E_{H}\left[\tilde{n}_{A}+\mathrm{n}^{0}\right]
\end{aligned}
\]

\section*{GAPW Functionals}
\[
E_{x c}[n]=E_{x c}[\tilde{n}]+\sum_{A} E_{x c}\left[n_{A}\right]-\sum_{A} E_{x c}\left[\tilde{n}_{A}\right]
\]
\[
E_{H}\left[n+n^{Z}\right]=E_{H}\left[\tilde{n}+\mathrm{n}^{0}\right]+
\]

on global grids via collocation + FFT

Analytic integrals
Local Spherical Grids

\section*{GAPW Input}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\&DFT}} \\
\hline & & \\
\hline \multicolumn{3}{|c|}{\&QS} \\
\hline \multicolumn{3}{|r|}{EXTRAPOLATION ASPC} \\
\hline \multicolumn{3}{|r|}{EXTRAPOLATION_ORDER 4} \\
\hline \multicolumn{3}{|r|}{EPS_DEFAULT 1.0E-12} \\
\hline \multicolumn{3}{|c|}{METHOD GAPW} \\
\hline \multicolumn{3}{|r|}{EPS_DEFAULT 1.0E-12} \\
\hline \multicolumn{3}{|r|}{QUADRATURE GC_LOG} \\
\hline \multicolumn{3}{|r|}{EPSFIT 1.E-4} \\
\hline \multicolumn{3}{|r|}{EPSIS0 1.0E-12} \\
\hline \multicolumn{3}{|r|}{EPSRH00 1.E-8} \\
\hline \multicolumn{3}{|c|}{LMAXN0 4} \\
\hline \multicolumn{3}{|c|}{LMAXN1 6} \\
\hline & ALPHAO_H & 10 \\
\hline \multicolumn{3}{|c|}{\&END QS} \\
\hline
\end{tabular}
```

 &SUBSYS
 ..
 &KIND 0
 BASIS_SET DZVP-MOLOPT-GTH-q6
 POTENTIAL GTH-BLYP-q6
 LEBEDEV_GRID 80
 RADIAL_GRID 200
 &END KIND
 &KIND 01
 ELEMENT 0

BASIS_SET 6-311++G2d2p

 BASIS_SET 6-311G**
 POTENTIAL ALL
 LEBEDEV_GRID 80
 RADIAL_GRID 200
 &END KIND
    ```

\section*{All-Electron Calculations}


\section*{All-Electron Calculations}


\section*{Energy Functional Minimization}
\[
C^{*}=\arg \min _{C}\left\{E(C): C^{T} S C=1\right\}
\]

Standard: Diagonalisation + mixing (DIIS, Pulay, J. Comput. Chem. 3, 556,(1982); iterative diag. Kresse G. et al, PRB, 54(16), 11169, (1996) )

检 Direct optimisation: Orbital rotations (maximally localised Wannier functions)

㩊 Linear scaling methods: Efficiency depends on sparsity of \(P(S\). Goedecker, Rev. Mod. Phys. 71, 1085,(1999))
\[
\begin{gathered}
\mathbf{P}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \propto e^{-c \sqrt{E_{\text {gap }}}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
\mathbf{P}_{\mu \nu}=\sum_{p q} \mathbf{S}_{\mu p}^{-1} \mathbf{S}_{q \nu}^{-1} \iint \varphi_{p}(\mathbf{r}) \mathbf{P}(\mathbf{r}, \mathbf{r} \prime) \varphi_{q}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r} \mathrm{~d} \mathbf{r}^{\prime}
\end{gathered}
\]


\section*{Orbital Transformation Method}

Introduce auxiliary, linearly constrained variables to parametrize the occupied subspace
\[
\begin{array}{cc}
\text { not linear orthonormality constraint } & \begin{array}{c}
\text { Linear constraint } \\
\mathbf{X S C}_{0}=0
\end{array} \\
\qquad \begin{array}{c} 
\\
\mathbf{C}^{\dagger} \mathbf{S C}=\mathbf{I}
\end{array} & \mathbf{U}=\left(\mathbf{X}^{\dagger} \mathbf{S X}\right)^{1 / 2}
\end{array}
\]

> minimization in the auxiliary tangent space, idempotency verified
\[
\frac{\partial E(\mathbf{C}(\mathbf{X}))+\operatorname{Tr}\left(\mathbf{X}^{\dagger} \mathbf{S C}_{0} \Lambda\right)}{\partial \mathbf{X}}=\frac{\partial E}{\partial C} \frac{\partial \mathbf{C}}{\partial \mathbf{X}}+\mathbf{S C}_{0} \Lambda
\]

\section*{Preconditioned gradients}
\[
\mathbf{P}(\mathbf{H}-\mathbf{S} \epsilon) \mathbf{X}-\mathbf{X} \approx 0 \quad \mathbf{X} \rightarrow \sqrt{\mathbf{P}} \mathbf{X}
\]

\section*{Orbital Transformation Method}

Introduce auxiliary, linearly constrained variables to parametrize the occupied subspace
not linear orthonormality constraint
\[
\begin{gathered}
\mathbf{C}^{\dagger} \mathbf{S C}=\mathbf{I} \\
\mathbf{C}(\mathbf{X})=\mathbf{C}_{0} \cos (\mathbf{U})+\mathbf{X} \mathbf{U}^{-1} \sin (\mathbf{U})
\end{gathered}
\]
minimization in the auxiliary tangent space, idempotency verified
\(\frac{\partial E(\mathbf{C}(\mathbf{X}))+\operatorname{Tr}\left(\mathbf{X}^{\dagger} \mathbf{S C}_{0} \Lambda\right)}{\partial \mathbf{X}}=\frac{\partial E}{\partial C} \frac{\partial \mathbf{C}}{\partial \mathbf{X}}+\mathbf{S C}_{0} \Lambda\)

\section*{Preconditioned gradients}
\[
\mathbf{P}(\mathbf{H}-\mathbf{S} \epsilon) \mathbf{X}-\mathbf{X} \approx 0 \quad \mathbf{X} \rightarrow \sqrt{\mathbf{P}} \mathbf{X}
\]
\[
\begin{aligned}
& \text { Linear constraint } \\
& \quad \mathbf{X S C} \mathbf{C}_{0}=0 \\
& \mathbf{U}=\left(\mathbf{X}^{\dagger} \mathbf{S X}\right)^{1 / 2}
\end{aligned}
\]

\section*{OT Method Performance}

Refined preconditioner, most effective during MD of large systems with well conditioned basis sets


\section*{OT Method Input}
```

\&SCF
EPS_SCF 1.01E-07
\&OUTER_SCF
MAX_SCF 20
EPS_SCF 1.01E-07
\&END OUTER_SCF
SCF_GUESS RESTART
MAX_SCF 20
\&OT
MINIMIZER DIIS
PRECONDITIONER FULL_ALL
\&END OT
\&END SCF

```

\section*{Iterative Refinement}
\[
C^{*}=\arg \min _{C}\left\{E[C] \mid C^{T} S C=1\right\}
\]

\section*{unconstrained functional minimization}
\[
Z^{*}=\arg \min _{Z}\{E[f(Z)]\} \quad C^{*}=f\left(Z^{*}\right) \quad f^{T}(Z) S f(Z)=1 \quad \forall Z
\]

\section*{approximate constraint function \(f_{n}\)}
\[
\begin{gathered}
f_{n}(Z): f_{n}^{T}(Z) S f_{n}(Z)-1=\mathcal{O}\left(\delta Z^{n+1}\right) \quad \forall Z=Z_{0}+\delta Z \quad \text { if } Z_{0}^{T} S Z_{0}=1 \\
f_{1}(Z)=\frac{1}{2} Z(3-Y) \quad f_{2}(Z)=\frac{1}{8} Z\left(15-10 Y+3 Y^{2}\right) \quad f_{3}(Z)=\frac{1}{16} Z\left(35-35 Y+21 Y^{2}-5 Y^{3}\right) \\
f_{4}(Z)=\frac{1}{128} Z\left(315-420 Y+378 Y^{2}-180 Y^{3}+35 Y^{4}\right) \\
Y=Z^{T} S Z \\
\begin{array}{c}
\text { Approximate Löwdin } \\
\text { factorizalion }
\end{array} \\
f_{n}\left(\ldots f_{n}(Z) \ldots\right) \\
\text { Includes only matrix addilions and multiplications } \\
\text { Simplifies parallelization and use sparsity }
\end{gathered}
\]

\section*{Direct Minimization}
\[
\begin{gathered}
\text { Input matrices } \\
h S C_{0} p \\
\text { Gradient } \\
D_{0}=-G_{0}=-G\left[C_{0}\right]
\end{gathered}
\]
Apply the preconditioner
\[
p G_{i+1}
\]
CG: Polak-Ribiere
\(D_{i+1}=-G_{i+1}+\beta_{i} D_{i}\)
\[
C^{*} \quad E\left[C^{*}\right]
\]
iterate refinement until
\[
C_{i+1}^{T} S C_{i+1}-1<\varepsilon_{\text {refine }}
\]

\section*{Dye－Sensitized Solar Cells}

In situ electronic spectroscopy and dynamics


洋 1751 atom computational cell， 864
（TiO2）， 60 dye＋electrolyte， 828 solvent
韧 9346 electrons， 22951 basis functions
漁 MD simulation using PBE（DFT＋U）
潾 CPU time on 1024 cores Cray－XT5
粎 SCF iteration： 13.7 seconds
洋 MD time step： 164 seconds
dye－iodide complex attached to TiO 2
F．Schiffmann et al．，PNAS 1074830 （2010）

\section*{Linear-Scaling DFT}

Based on sparse matrix matrix multiplications
\[
P=\frac{1}{2}\left(I-\operatorname{sign}\left(S^{-1} H-\mu I\right)\right) S^{-1}
\]

Self consistent solution by mixing
\[
\begin{gathered}
H_{n+1}\left(P_{n+1}\right) \\
\hat{H}_{n+1}=(1-\alpha) \hat{H}_{n}-\alpha H_{n+1}
\end{gathered}
\]

Chemical potential by bisecting until
\[
\mu_{n+1}: \quad\left|\operatorname{trace}\left(P_{n+1} S\right)-N_{e l}\right|<1 / 2
\]

\section*{Largest \(\mathrm{O}\left(\mathrm{N}^{3}\right)\) calculation with CP2K (~6000 atoms)}


Largest O(N) calculation with CP2K (~1'000'000 atoms)

\section*{Sparse Matrix Library}

\section*{DBCSR：Distributed Blocked Compressed Sparse Row}

缕 For massively parallel architectures
詸 Optimised for 10000s of non－zeros per row（dense limit）
溇 Stored in block form ：atoms or molecules
漁 Cannons algorithm：2D layout（rows／columns）and 2D distribution of data
鲜 Homogenised for load balance

given processor communicates only with nearest neighbours transferred data decreases as number of processors increases

\section*{Millions of Atoms}


Bulk liquid water. Dashed lines represent ideal linear scaling.

\section*{Traditional Diagonalization}

Eigensolver from standard parallel program library: SCALAPACK
\[
\mathbf{K C}=\mathbf{S C} \varepsilon
\]

Transformation into a standard eigenvalues problem
Cholesky decomposition \(\quad \mathbf{S}=U^{T} U \quad \mathbf{C}^{\prime}=U \mathbf{C}\)
\[
\mathbf{K C}=U^{T} U \mathbf{C} \varepsilon \quad \Rightarrow \quad\left[\left(U^{T}\right)^{-1} \mathbf{K} U^{-1}\right] \mathbf{C}^{\prime}=\mathbf{C}^{\prime} \varepsilon
\]

Diagonalisation of \(\mathbf{K}^{\prime}\) and back transformation of MO coefficients (occupied only (20\%))

DIIS for SCF convergence acceleration: few iterations
\[
\begin{gathered}
\text { error matrix } \\
\mathbf{e}=\mathbf{K P S}-\mathbf{S P K}
\end{gathered}
\]

\section*{Metallic Electronic Structure}
\[
E_{\mathrm{band}}=\sum_{n} \frac{1}{\Omega_{\mathrm{BZ}}} \int_{\mathrm{BZ}} \varepsilon_{n \mathbf{k}} \Theta\left(\varepsilon_{n \mathbf{k}}-E_{f}\right) d^{3} \mathbf{k} \rightarrow \sum_{n} \sum_{k} w_{\mathbf{k}} \varepsilon_{n \mathbf{k}} \Theta\left(\varepsilon_{n \mathbf{k}}-E_{f}\right) d^{3} \mathbf{k}
\]


charge sloshing and exceedingly slow convergence
渻 Wavefunction must be orthogonal to unoccupied bands close in energy
结 Discontinuous occupancies generate instability（large variations in \(n(r)\) ）
业怠 Integration over k－points and iterative diagonalisation schemes

\section*{Smearing \& Mixing in G-Space}

Mermin functional: minimise the free energy
\[
F(T)=E-\sum_{n} k_{B} T S\left(f_{n}\right) \quad S\left(f_{n}\right)=-\left[f_{n} \ln f_{n}+\left(1-f_{n}\right) \ln \left(1-f_{n}\right)\right]
\]

Any smooth operator that allows accurate \(S\left(f_{n}\right)\) to recover the \(T=0\) result
\[
f_{n}\left(\frac{\varepsilon_{n}-E_{f}}{k T}\right)=\frac{1}{\exp \left(\frac{\varepsilon_{n}-E_{f}}{k_{\mathrm{B}} T}\right)+1} \quad \text { Fermi-Dirac }
\]

Trial density mixed with previous densities: damping oscillations
\[
n_{m+1}^{\mathrm{inp}}=n_{m}^{\mathrm{inp}}+\mathbf{G}^{I} \mathcal{R}\left[n_{m}^{\mathrm{inp}}\right]+\sum_{i=1}^{m-1} \alpha_{i}\left(\Delta n_{i}+\mathbf{G}^{I} \Delta \mathcal{R}_{i}\right)
\]
residual
\[
\mathcal{R}\left[n^{\text {inp }}\right]=n^{\text {out }}\left[n^{\text {inp }}\right]-n^{\text {inp }}
\]
minimise the residual
\(G\) preconditioning matrix damping low \(G\)

\section*{Iterative Improvement of \(\mathrm{n}(\mathbf{r})\)}


\section*{Rhodium: Bulk \& Surface}

Bulk: \(4 \times 4 \times 4\)
Surface: 6x6 7 layers
\begin{tabular}{cccccc} 
Basis & PP & \(\mathrm{a}_{0}[\AA \AA]\) & \(\mathrm{B}[\mathrm{GPa}]\) & \(\mathrm{E}_{s}\left[\mathrm{eV} / \AA^{2}\right]\) & \(\mathrm{W}_{f}[\mathrm{eV}]\) \\
\hline 3s2p2df & 17 e & 3.80 & 258.3 & 0.186 & 5.11 \\
2s2p2df & 9 e & 3.83 & 242.6 & 0.172 & 5.14 \\
2sp2d & 9 e & 3.85 & 230.2 & 0.167 & 5.20 \\
spd & 9 e & 3.87 & 224.4 & 0.164 & 5.15
\end{tabular}


\section*{ScaLAPACK for diagonalization}


576 Cu , nao \(=14400\), Nelect. \(=6336\), \(k\) of eigen-pairs \(=3768\)
\begin{tabular}{cccc}
\hline \hline nprocs & syevd & syevr & Cholesky \\
\hline 32 & \(106(49 \%)\) & \(72(40 \%)\) & \(38(21 \%)\) \\
64 & \(69(46 \%)\) & \(48(37 \%)\) & \(34(26 \%)\) \\
128 & \(41(41 \%)\) & \(29(34 \%)\) & \(23(28 \%)\) \\
256 & \(35(41 \%)\) & \(26(34 \%)\) & \(24(32 \%)\) \\
\hline \multicolumn{4}{c}{ Syevd: D\&C }
\end{tabular}
time \(\times\) SCF, on CRAY XE6
\(>70 \%\) in eigenvalue solver

\section*{ELPA (http://elpa.rzg.mpg.de)}

Improved efficiency by a two-step transformation and back transformation
better scaling
complex
\begin{tabular}{c} 
mainly \\
\(B L A S ~ 3\)
\end{tabular}


\section*{Large Metallic Systems}

\section*{hBN/Rh(111) Nanomesh \\ \(13 \times 13 \mathrm{hBN}\) on \(12 \times 12\) Rh slab}


2116 Ru atoms (8 valence el.) +1250 C atoms,
Nel \(=21928, \mathrm{NaO}=47990\);
~ several days per structure optimisation

Slab \(12 \times 12 \operatorname{Rh}(111)\) slab, \(a_{0}=3.801 \AA, 1\) layer hBN \(13 \times 13\)
4L: 576Rh + 169BN: Nao=19370; Nel=11144
7L: 1008Rh + 338BN: NaO=34996; Nel=19840

\section*{SCF for Metals}
```

\&SCF
SCF_GUESS ATOMIC
MAX_SCF 50
EPS_SCF 1.0e-7
EPS_DIIS 1.0e-7
\&SMEAR
METHOD FERMI_DIRAC
ELECTRONIC_TEMPERATURE 500.
\&END SMEAR
\&MIXING
METHOD BROYDEN_MIXING
ALPHA 0.6
BETA 1.0
NBROYDEN 15
\&END MIXING
ADDED_MOS 20 20
\&END SCF

```

\section*{Hills \& Valleys of Graphene}

\begin{tabular}{lcc}
\hline Method & \(h_{\min }(\AA)\) & \(\Delta h(\AA)\) \\
\hline LEEM \(^{5}\) & \(1.5 \pm 0.1\) & - \\
LEED \(^{18}\) & \(2.1 \pm 0.2\) & \(1.5 \pm 0.2\) \\
SXRD \(^{21}\) & - & \(0.82 \pm 0.15\) \\
HAS \(^{19}\) & - & \(0.17 \pm 0.03\) \\
\hline
\end{tabular}

Issues: binding distance corrugation height distribution


\section*{Electron Density: Cube File}

Valence density on regular grids
\[
n(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \rightarrow \sum_{\mu \nu} P_{\mu \nu} \bar{\varphi}_{\mu \nu}(\mathbf{R})=n(\mathbf{R})
\]

Cutoff might be too small for high resolution close to the nuclei (all electrons)
\[
\psi_{i}(\mathbf{r})=\sum_{\mu} C_{\mu i} \varphi_{\mu}(\mathbf{r}) \rightarrow \sum_{\mu} C_{\mu i} \bar{\varphi}(\mathbf{R})=\psi_{i}(\mathbf{R})
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{-Quickstep-} \\
\hline \multicolumn{7}{|l|}{TOTAL DENSITY} \\
\hline 8 & 0.000000 & 0.000000 & 0.000000 & & & \\
\hline 54 & 0.349949 & 90.000000 & 0.000000 & & & \\
\hline 54 & 0.000000 & 0.349949 & 0.000000 & & & \\
\hline 63 & 0.000000 & 0.000000 & 0.362827 & & & \\
\hline 5 & 0.000000 & 9.448631 & 9.448631 & 11.338357 & & \\
\hline 5 & 0.000000 & 9.448631 & 9.448631 & 14.683172 & & \\
\hline I & 0.000000 & 11.322313 & 9.448631 & 13.010846 & & \\
\hline I & 0.000000 & 7.574948 & 9.448631 & 13.010846 & & \\
\hline 1 & 0.000000 & 9.448631 & 11.416848 & 15.778669 & & \\
\hline 1 & 0.000000 & 9.448631 & 7.480413 & 15.778669 & & \\
\hline I & 0.000000 & 9.448631 & 7.480413 & 10.242860 & & \\
\hline 1 & 0.000000 & 9.448631 & 11.416848 & 10.242860 & & \\
\hline \multicolumn{2}{|l|}{\(0.16324 \mathrm{E}-08\)} & 0.14425E-08 & \(0.13016 \mathrm{E}-08\) & \(0.12075 \mathrm{E}-08\) & 0.11584E-08 & 0.11533E-08 \\
\hline \multicolumn{2}{|l|}{0.11920E-08 0} & 0.12755E-08 & \(0.1405 \mathrm{IE}-08\) & \(0.15832 \mathrm{E}-08\) & \(0.18123 \mathrm{E}-08\) & 0.20955E-08 \\
\hline \multicolumn{2}{|l|}{\(0.24355 \mathrm{E}-08\)} & 0.28348E-08 & 0.32950E-08 & 0.38I70E-08 & 0.44000E-08 & 0.50422E-08 \\
\hline
\end{tabular}

\section*{Spin Density}

Spin polarized DFT calculations:
\[
n^{(\alpha)}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu}^{(\alpha)} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \quad n^{(\beta)}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu}^{(\beta)} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r})
\]
\[
\Delta n_{\text {spin }}(\mathbf{r})=n^{(\alpha)}(\mathbf{r})-n^{(\beta)}(\mathbf{r}) \rightarrow \Delta n_{\text {spin }}(\mathbf{R})
\]
\(\mathrm{H}_{3} \mathrm{C}-\mathrm{CO}-\mathrm{NH}_{2}-\mathrm{CH}_{3}\)
\[
\left(\mathrm{H}_{3} \mathrm{C}-\mathrm{CO}-\mathrm{NH}_{2}-\mathrm{CH}_{3}\right)^{+}
\]


\section*{Density Difference}

Changes in the electronic density due to interactions, e.g., molecule adsorbed on substrate
\[
E_{\mathrm{ads}}=E_{\mathrm{tot}}-\left(E_{\mathrm{sub}}^{o}+E_{\mathrm{mol}}^{o}\right) \quad E_{\mathrm{int}}=E_{\mathrm{tot}}-\left(E_{\mathrm{sub}}^{f}+E_{\mathrm{mol}}^{f}\right)
\]

CHP on hBN/Rh (5 eV)

\[
\Delta n_{\mathrm{int}}(\mathbf{r})=n_{\mathrm{tot}}(\mathbf{r})-\left(n_{\mathrm{sub}}^{f}(\mathbf{r})+n_{\mathrm{mol}}^{f}(\mathbf{r})\right)
\]

hBN

Rh

\section*{STM Images}

Tersoff-Hamann approximation to mimic the iso-current topography
\[
n_{b}(\mathbf{r})=\sum_{i: \varepsilon_{i} \in\left[E_{f}-V_{b}: E_{f}\right]}\left[\sum_{\mu \nu} C_{\mu i}^{*} C_{\nu i} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r})\right] \rightarrow n_{b}(\mathbf{R})
\]

Find height at constant energy projected density
\[
z: n_{b}(X, Y, z) e^{-2 k R_{0} \sqrt{\Phi(X, Y, z)}}
\]


\section*{CHP on hBN/Rh (5 eV)}



\section*{Position Operator for Isolated Systems}

One body operator
\[
\hat{X}=\sum_{i=1}^{N} x_{i}
\]

Expectation value
\[
\langle X\rangle=\langle\Psi| \hat{X}|\Psi\rangle=\int x n(x) d x
\]

Gauge invariance
\[
\langle X\rangle_{R}=\langle\Psi| \hat{X}+R|\Psi\rangle=\langle X\rangle_{0}+R \int n(x) d x=\langle X\rangle_{0}+R Z
\]

\section*{Position Operator with PBC}

Expectation value of the position operator
\[
\begin{equation*}
\hat{\mathbf{R}}=\sum_{i} \hat{\mathbf{r}}_{i} \quad\langle\mathbf{R}\rangle=\langle\Psi| \hat{\mathbf{R}}|\Psi\rangle=\int \mathbf{r} n(\mathbf{r}) d \mathbf{r} \tag{3D}
\end{equation*}
\]

Wavefunctions are periodic, result of an operator has also to be periodic
\[
\Psi(\mathbf{r})=\Psi(\mathbf{r}+\mathbf{L}) \quad \hat{\mathbf{R}} \Psi(\mathbf{r}) \neq(\hat{\mathbf{R}}+\mathbf{L}) \Psi(\mathbf{r}+\mathbf{L})
\]

Many-body periodic
position operator (1D)
\[
\langle X\rangle=\frac{L}{2 \pi} \operatorname{Im} \ln \langle\psi| e^{i \frac{2 \pi}{L} \tilde{X}}|\psi\rangle
\]

Berry Phase

Electronic polarisation
\[
P_{\mathrm{el}}=\lim _{L \rightarrow \infty} \frac{e}{2 \pi} \operatorname{Im} \operatorname{In}\langle\Psi| e^{i \frac{2 \pi}{L} \hat{X}}|\Psi\rangle
\]

\section*{Polarization}

Many-body wavefunction (Bloch orbitals)
\[
|\Psi\rangle=A \prod_{i} \prod_{s} \psi_{q_{s}, i}(\mathbf{r})
\]

New set of Bloch orbitals
\[
\tilde{\psi}_{q_{s}, m}(x)=e^{-i \frac{2 \pi}{L} x} \psi_{q_{s}, m}(x) \quad \frac{2 \pi}{L}=G_{1}
\]

Expectation value from overlap of determinants = determinants of overlap of orbitals
\[
\begin{array}{r}
\langle X\rangle=-\frac{L}{2 \pi} \operatorname{Im} \ln \langle\Psi \mid \tilde{\Psi}\rangle=-\frac{L}{2 \pi} \operatorname{Im} \ln \operatorname{det} S \\
S_{i j}^{\alpha}=\int \psi_{i}(\mathbf{r}) e^{i \mathbf{G}_{\alpha 1} \cdot \mathbf{r}} \psi_{j}(\mathbf{r}) d \mathbf{r} \\
P^{\alpha}=\frac{2 e}{\mathbf{G}_{\alpha 1}} \operatorname{Im} \ln \left[\operatorname{det} \mathbf{S}^{\alpha}\right]
\end{array}
\]

\section*{Localized Orbitals}
* Boys spread of the orbitals through a 2-el operator \(\Omega=\sum_{i}\left\langle\psi_{i} \psi_{i}\right|\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)^{2}\left|\psi_{i} \psi_{i}\right\rangle\)
\& With \(P B C\), localize equivalent to minimize
\[
\Omega=\frac{1}{2 \pi} \sum_{s} \sum_{i} \omega_{s}\left(1-\left(\left|z_{s i}\right|^{2}\right)\right) \quad z_{s i}=\int d \mathbf{r} e^{i \mathbf{k}_{\mathbf{s}} \cdot \mathbf{r}}\left|\psi_{i}(\mathbf{r})\right|^{2}
\]

2* Find the unitary transformation
\[
\tilde{\psi}_{i}(\mathbf{r})=\sum_{j} U_{i j} \psi_{i}(\mathbf{r}) \quad \frac{\partial \Omega}{\partial U_{i j}}=0
\]
* Iterative procedure (parallel Jacobi rotations)
* Centre of the charge distribution of the rotated orbital
\[
\left\langle r_{s i}\right\rangle=\frac{L_{s}}{2 \pi} \operatorname{Im} \ln z_{s i}
\]


\section*{Wannier Centers}

For a generalised 3D box \(h\), for each maximally localised Wannier orbital
\(z_{s i}=\operatorname{deth} \int d \mathbf{r} e^{i \mathbf{k}_{s} \cdot \mathbf{r}}\left|\psi_{i}(\mathbf{r})\right|^{2} \quad \quad \mathbf{r}_{s i}=-\sum_{t} \frac{\mathbf{h}_{s t}}{2 \pi} \operatorname{Im} \ln z_{t i}\)


Molecular dipole moment from Wannier centres
\(\mu_{s}^{W}=e \sum_{i} \mathbf{r}_{s i}=-e \sum_{i} \sum_{t} \frac{\mathbf{h}_{s t}}{2 \pi} \operatorname{Im} \ln z_{t i}=-e \sum_{t} \frac{\mathbf{h}_{s t}}{2 \pi} \operatorname{Im} \ln \prod_{i} z_{t i}\)
IR spectra from dipole moment autocorrelation function
\[
\alpha(\omega)=\frac{4 \pi \omega \tanh (\beta \hbar \omega / 2)}{\hbar n(\omega) c V} \int_{-\infty}^{\infty} d t e^{-i \omega t}\langle P(t) \cdot P(0)\rangle
\]
```

