Ab-Initio Path-Integral

 Molecular DynamicsThomas D. Kühne
Chair of Theoretical Chemistry
Dynamics of Condensed Matter

UNIVERSITÄT PADERBORN
Die Universität der Informationsgesellschaft

The Virtual Chemistry Lab

The Virtual Chemistry Lab

The Virtual Chemistry Lab

The Virtual Chemistry Lab

„The most important hypothesis in all of biology, chemistry and physics is that everything is made of atoms, and that everything living things do
can be understood in terms of the jigglings and wigglings of atoms"

The Virtual Chemistry Lab

Quantum mechanical description is essential

The Virtual Chemistry Lab

Dynamics is indispensable

The Virtual Chemistry Lab

Dynamics \& QM on large length and time scales

Schrödinger Equation

Schrödinger Equation

,,.. hence it would be desirable to develop practical approximation schemes for the application of quantum mechanics"

Born-Oppenheimer

$\mathcal{H}(\mathbf{r}, \mathbf{R}) \Psi(\mathbf{r}, \mathbf{R})=E \Psi(\mathbf{r}, \mathbf{R})$, mit

$$
\mathcal{H}(\mathbf{r}, \mathbf{R})=T_{e}+T_{K}+V_{e e}(\mathbf{r})+V_{e K}(\mathbf{r}, \mathbf{R})+V_{K K}(\mathbf{R})
$$

$M_{I} \approx 1836 m_{e}$

$$
\Psi(\mathbf{r}, \mathbf{R}) \approx \psi(\mathbf{r} ; \mathbf{R}) \chi(\mathbf{R})
$$

Born-Oppenheimer

$$
\begin{gathered}
\mathcal{H}(\boldsymbol{r}, \boldsymbol{R})=\mathcal{H}_{e}(\boldsymbol{r} ; \boldsymbol{R})+\mathcal{H}_{K}(\boldsymbol{R}) \& \nabla_{\boldsymbol{R}_{I}}^{2} \chi(\boldsymbol{R}) \gg \nabla_{\boldsymbol{R}_{I}}^{2} \psi(\boldsymbol{r} ; \boldsymbol{R}) \\
\frac{\mathcal{H}_{e}(\boldsymbol{r} ; \boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R})}{\psi(\boldsymbol{r} ; \boldsymbol{R})}=E-\frac{\mathcal{H}_{K}(\boldsymbol{R}) \chi(\boldsymbol{R})}{\chi(\boldsymbol{R})}=\varepsilon(\boldsymbol{R})
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{H}_{e}(\boldsymbol{r} ; \boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R})=\varepsilon(\boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R}) \\
& {\left[\mathcal{H}_{K}(\boldsymbol{R})+\varepsilon(\boldsymbol{R})\right] \chi(\boldsymbol{R})=E \chi(\boldsymbol{R})}
\end{aligned}
$$

Born-Oppenheimer

$$
\begin{gathered}
\mathcal{H}(\boldsymbol{r}, \boldsymbol{R})=\mathcal{H}_{e}(\boldsymbol{r} ; \boldsymbol{R})+\mathcal{H}_{K}(\boldsymbol{R}) \& \nabla_{\boldsymbol{R}_{I}}^{2} \chi(\boldsymbol{R}) \gg \nabla_{\boldsymbol{R}_{I}}^{2} \psi(\boldsymbol{r} ; \boldsymbol{R}) \\
\frac{\mathcal{H}_{e}(\boldsymbol{r} ; \boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R})}{\psi(\boldsymbol{r} ; \boldsymbol{R})}=E-\frac{\mathcal{H}_{K}(\boldsymbol{R}) \chi(\boldsymbol{R})}{\chi(\boldsymbol{R})}=\varepsilon(\boldsymbol{R}) \\
\varepsilon(\boldsymbol{R})+V_{K K}(\boldsymbol{R}) \approx \sum_{I} v_{1}\left(\boldsymbol{R}_{I}\right)+\sum_{I<J} v_{2}\left(\boldsymbol{R}_{I}, \boldsymbol{R}_{J}\right)+\ldots \\
M_{I} \ddot{\boldsymbol{R}}_{I}=-\nabla_{\boldsymbol{R}_{I}}\left[\varepsilon(\boldsymbol{R})+V_{K K}(\boldsymbol{R})\right]
\end{gathered}
$$

Born-Oppenheimer

Electrons

Electrons

$$
\varepsilon(\boldsymbol{R})+V_{K K}(\boldsymbol{R}) \approx \sum_{I} v_{1}\left(\boldsymbol{R}_{I}\right)+\sum_{I<J} v_{2}\left(\boldsymbol{R}_{I}, \boldsymbol{R}_{J}\right)+\ldots
$$

$$
M_{I} \ddot{\boldsymbol{R}}_{I}=-\nabla_{\boldsymbol{R}_{I}}\left[\varepsilon(\boldsymbol{R})+V_{K K}(\boldsymbol{R})\right]
$$

Molecular Dynamics

"for the development of multiscale models for complex chemical systems".

- protein folding,
- catalysis,
- electron transfer,
- drug design

Winners of Nobel Prize in Chemistry 2013

Martin Karplus Michael Levitt Arieh Warshel

1. Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 27, 1208 (1957)
2. Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 31, 459 (1959)
3. Rahman, A. Phys. Rev. A136, 405 (1964)
4. Stillinger, F. H. and Rahman, A. J. Chem. Phys. 60, 1545 (1974)
5. McCammon, J. A., Gelin, B. R., and Karplus, M. Nature (Lond.) 267, 585 (1977)

What MD is NOT!

The Essence of MD

Internuclear Separation (r)

The Essence of MD

Internuclear Separation (r)

The Essence of MD

Internuclear Separation (r)

The Essence of MD

Internuclear Separation (r)

Boltzmann Distribution

- Absolute probability P of a system to be in position x :

$$
P(x)=e^{-\frac{U(x)}{k_{B} T}} / \mathcal{Z}
$$

- $\mathrm{U}(\mathrm{x})$: Potential energy of a system at position x
- $\mathcal{Z}=\sum_{x} e^{-\frac{U(x)}{k_{B} T}}:$ Partition function, so that $\sum_{x} P(x)=1$

Relative Probability

- The calculation of $\mathcal{Z}=\sum_{x} e^{-\frac{U(x)}{k_{B} T}}$ however, is very demanding!
- Analytic determination of Z is generally impossible!
- Evaluating Z at random points is not accurate enough!
- Approximating Z at nuclear ground-state only valid for $\mathrm{T}=0 \mathrm{~K}$!
- Calculation of $\mathrm{P}(\mathrm{x})$ by $\mathrm{MD} / \mathrm{MC}$ requires unlimited computer time!
- Computing rel. probability is easy:

$$
\begin{aligned}
P\left(x_{i}\right) & =e^{-\frac{U\left(x_{i}\right)}{k_{b} T}} / \mathcal{Z} \\
P\left(x_{j}\right) & =e^{-\frac{U\left(x_{j}\right)}{k_{b} T}} / \mathcal{Z} \\
\frac{P\left(x_{i}\right)}{P\left(x_{j}\right)} & =e^{-\frac{U\left(x_{i}\right)-U\left(x_{j}\right)}{k_{b} T}}
\end{aligned}
$$

The Essence of MD

Internuclear Separation (r)

The Essence of MD

Internuclear Separation (r)

Monte Carlo

Monte Carlo

Importance Sampling

- Till now we were selecting our configurations from a uniform distribution and weight the configurations a posteriori by means of the relative Boltzmann probability $\frac{P\left(x_{i}\right)}{P\left(x_{j}\right)}=e^{-\frac{U\left(x_{i}\right)-U\left(x_{j}\right)}{k_{b} T}}$
- Instead, we would like to sample a priori from the Boltzmann distribution and weight the configurations equally, i.e.

$$
\begin{aligned}
\rho(x) & \propto e^{-\frac{U(x)}{k_{B} T}} \\
\langle A\rangle & =\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{i=1}^{L} \rho_{i}(x) A\left(x_{i}\right)
\end{aligned}
$$

- But how? Since knowing the whole $\rho(x)$ corresponds to know Z!

Metropolis Monte Carlo

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

Abstract

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

II. THE GENERAL METHOD FOR AN ARBITRARY POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for numerical work, we can, of course, consider only a finite number of particles. This number N may be as high as several hundred. Our system consists of a square \dagger con-

Monte Carlo \& MANIAC

Monte Carlo \& MANIAC

Now, Teller was not one to let Fermi leave him behind. Anything Fermi could do, he could do too. So Teller also became a student of Nick's and learned how to program the MANIAC. When he came back to Chicago-he was on the faculty then-not to be outdone by Fermi he announced that he would give a colloquium on the subject of computers. But when the colloquium notice appeared, it didn't convey exactly the impression he had intended. It read,

Edward Teller The MANIAC

What we are interested in?

- Thermodynamic ensemble properties:

Partition

Static equilibrium properties:

$$
\langle A\rangle=\frac{1}{(2} / \int d^{3 N} R \int d^{3 N} p \mathrm{e}^{\text {Function } / k_{B} T} A(p, R)
$$

Dynamic properties: $\langle A(0) B(t)\rangle=\frac{1}{Z} \int d^{3 N} R \int d^{3 N} p \mathrm{e}^{-\mathcal{H} / k_{B} T} A(p(0), R(0)) B(p(t), R(t))$

What we are interested in?

- Thermodynamic ensemble properties:

Partition

$$
\langle A\rangle=\frac{1}{(Z} \iint d^{3 N} R \int d^{3 N} p \text { e } \begin{array}{ll}
\text { Function }
\end{array} k_{B} T A(p, R)
$$

Dynamic properties: $\langle A(0) B(t)\rangle=\frac{1}{Z} \int d^{3 N} R \int d^{3 N} p \mathrm{e}^{-\mathcal{H} / k_{B} T} A(p(0), R(0)) B(p(t), R(t))$

What we are interested in?

- Ergodic hypothesis: ensemble average equal to time average

$$
\begin{aligned}
\langle A\rangle & =\frac{1}{Z} \int d^{3 N} R \int d^{3 N} p \mathrm{e}^{-\mathcal{H} / k_{B} T} A(p, R) \\
\langle A(0) B(t)\rangle & =\frac{1}{Z} \int d^{3 N} R \int d^{3 N} p \mathrm{e}^{-\mathcal{H} / k_{B} T} A(p(0), R(0)) B(p(t), R(t))
\end{aligned}
$$

What we are interested in?

- Ergodic hypothesis: ensemble average equal to time average

$$
\begin{aligned}
\langle A\rangle & =\frac{1}{T} \int_{0}^{T} d t^{\prime} A\left(p\left(t^{\prime}\right), R\left(t^{\prime}\right)\right) \\
\langle A(0) B(t)\rangle & =\frac{1}{T} \int_{0}^{T} d t^{\prime} A\left(t^{\prime}\right) B\left(t+t^{\prime}\right)
\end{aligned}
$$

Molecular Dynamics

Time evolution of a classical many-body system in a potential

$$
\mathcal{L}(\boldsymbol{R}, \dot{\boldsymbol{R}})=T(\dot{\boldsymbol{R}})-V(\boldsymbol{R})=\frac{1}{2} \sum_{I} M_{I} \dot{\boldsymbol{R}}_{I}^{2}-\Phi\left(\left\{\boldsymbol{R}_{I}\right\}\right)
$$

Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{R}}_{I}}=\frac{\partial \mathcal{L}}{\partial \boldsymbol{R}_{I}}
$$

Equation of motion

$$
M_{I} \ddot{\boldsymbol{R}}_{I}=-\frac{\partial \Phi\left(\left\{\boldsymbol{R}_{I}\right\}\right)}{\partial \boldsymbol{R}_{I}}=\boldsymbol{F}_{I}
$$

Molecular Dynamics

Correlations in the Motion of Atoms in Liquid Argon*

A. Rahman

Argonne National Laboratory, Argonne, Illinois
(Received 6 May 1964)
A system of 864 particles interacting with a Lennard-Jones potential and obeying classical equations of motion has been studied on a digital computer (CDC 3600) to simulate molecular dynamics in liquid argon

Integrating Newton's EOM

Integrating Newton's EOM $\left(R_{1}, p_{1}\right)$

$\left(R_{2}, p_{2}\right) \quad \therefore \quad\left(R_{3}, p_{3}\right) \quad l$. Assign initial R (position) and p (momenta)
2. Evolve (numerically) Newton's equation of motion for a finite time increment

$$
\begin{gathered}
\mathcal{H}(\mathbf{R}, \mathbf{p})=\sum_{I} \frac{\mathbf{p}_{I}^{2}}{2 M_{I}}+V(\mathbf{R}) \\
\dot{\mathbf{p}}_{I}=-\frac{\partial \mathcal{H}}{\partial \mathbf{R}_{I}}=-\nabla \underbrace{V}_{V(\mathbf{R})}) \rightarrow M_{I} \ddot{\mathbf{R}}_{I}=\underbrace{\boldsymbol{F}_{I}}_{\text {Force }} \quad \dot{\mathbf{R}}_{I}=\mathbf{p}_{I} / M_{I}
\end{gathered}
$$

Integrating Newton's EOM

$\left(R_{2}, p_{2}\right) \quad \because \quad$| $\left(R_{1}, p_{1}\right)$ |
| :--- |
| $\left(R_{3}, p_{3}\right)$ |\quad I. Assign initial R (position) and p (momenta)

2. Evolve (numerically) Newton's equation of motion for a finite time increment

$$
\begin{gathered}
\mathcal{H}(\mathbf{R}, \mathbf{p})=\sum_{I} \frac{\mathbf{p}_{I}^{2}}{2 M_{I}}+V(\mathbf{R}) \\
\dot{\mathbf{p}}_{I}=-\frac{\partial \mathcal{H}}{\partial \mathbf{R}_{I}}=-\nabla \underbrace{V}_{\text {Potential }}(\mathbf{R}) \rightarrow M_{I} \ddot{\mathbf{R}}_{I}=\underbrace{}_{\text {Force }} \quad \dot{\mathbf{R}}_{I}=\mathbf{p}_{I} / M_{I}
\end{gathered}
$$

$\left(R_{1}(t+d t), p_{1}(t+d t)\right)$
$\left(R_{2}(t+d t)\right.$,
$\left.p_{2}(t+d t)\right)$
3.Assign new position and momenta

$$
\left(R_{3}(t+d t), p_{3}(t+d t)\right)
$$

Integrating Newton's EOM $\underbrace{(R, p)}$

2. Evolve (numerically) Newton's equation of motion for a finite time increment

$$
\begin{gathered}
\mathcal{H}(\mathbf{R}, \mathbf{p})=\sum_{I} \frac{\mathbf{p}_{I}^{2}}{2 M_{I}}+V(\mathbf{R}) \\
\dot{\mathbf{p}}_{I}=-\frac{\partial \mathcal{H}}{\partial \mathbf{R}_{I}}=-\nabla \overbrace{V(\mathbf{R})}^{\text {Potial }}) \rightarrow M_{I} \ddot{\mathbf{R}}_{I}=\underbrace{\boldsymbol{F}_{I}}_{\text {Force }}
\end{gathered}
$$

$\left(R_{I}(t+d t), p_{I}(t+d t)\right)$
($R_{2}(t+d t)$, $\left.p_{2}(t+d t)\right)$
3. Assign new position and momenta
$\left(R_{3}(t+d t), p_{3}(t+d t)\right)$

Euler's Algorithm

- First shot:Taylor expansion of R

$$
R(t+\Delta t)=R(t)+\frac{p(t)}{m} \Delta t+\frac{\text { Force }}{\dot{\dot{p}(t)}} \frac{\text { Error } O\left(\Delta t^{3}\right)}{2 m} \Delta t^{2}+\dddot{\dddot{\hbar}(t) \frac{\Delta t^{3}}{3!}+O\left(\Delta t^{4}\right)}
$$

Euler's Algorithm

- First shot:Taylor expansion of R

$$
R(t+\Delta t)=R(t)+\frac{p(t)}{m} \Delta t+\frac{\text { Force }}{\dot{\dot{p}(t)}} \frac{\text { Error } O\left(\Delta t^{3}\right)}{2 m} \Delta t^{2}+\dddot{\Pi}(t) \frac{\Delta t^{3}}{3!}+O\left(\Delta t^{4}\right)
$$

- Simple truncation of the Taylor expansion is a bad idea
- The naive „forward Euler" algorithm is
- not time reversible
- does not conserve phase space volume
- does not conserve energy
- Use Verlet's algorithm instead

Verlet's Algorithm

- First shot:Taylor expansion of R

$$
\begin{gathered}
R(t+\Delta t)=R(t)+\frac{p(t)}{m} \Delta t+\frac{\text { Force }}{\dot{p}(t)} \Delta t^{2}+\dddot{R}(t) \frac{\Delta t^{3}}{3!}+O\left(\Delta t^{4}\right) \\
\frac{R(t-\Delta t)=R(t)-\frac{p(t)}{m} \Delta t+\frac{\dot{p}(t)}{2 m} \Delta t^{2}-\dddot{R}(t) \frac{\Delta t^{3}}{3!}+O\left(\Delta t^{4}\right)+}{R(t+\Delta t)+R(t-\Delta t)=2 R(t)+\frac{\dot{p}(t)}{m} \Delta t^{2}+O\left(\Delta t^{4}\right) \text { Error }^{2}} \\
R(t+\Delta t) \approx 2 R(t)-R(t-\Delta t)+\frac{\dot{p}(t)}{m} \Delta t^{2} \\
\text { Verlet Algorithm }
\end{gathered}
$$

"Verlet" is also symplectic: conserves $d p \wedge d R$ and the form of Hamilton's equations

Velocity-Verlet Algorithm

$$
\begin{aligned}
\boldsymbol{R}_{I}(t+\Delta t)= & \boldsymbol{R}_{I}(t)+\Delta t \times \dot{\boldsymbol{R}}_{I}(t)+\frac{\Delta t^{2}}{2 M_{I}} \boldsymbol{F}_{I}(t) \\
& \text { Calculate } \boldsymbol{F}_{I}(t+\Delta t) \\
\dot{\boldsymbol{R}}_{I}(t+\Delta t)= & \dot{\boldsymbol{R}}_{I}(t)+\frac{\Delta t}{2 M_{I}}\left[\boldsymbol{F}_{I}(t)+\boldsymbol{F}_{I}(t+\Delta t)\right]
\end{aligned}
$$

- Simple and efficient: Only $\boldsymbol{F}_{I}(t)$, no higher derivatives required
- Explicitly time reversible
- Symplectic, i.e. conserves phase space volume

Excellent long time stability \Rightarrow Energy conservation

Lyapunov Instability

- It's impossible to determine initial conditions: $\Delta \boldsymbol{R} \times \Delta \boldsymbol{P} \sim \hbar$
- Finite numerical accuracy of the integrator as well as $\Phi(\boldsymbol{R})$
- Even worse: The Lyapunov instability

$$
\left|\boldsymbol{R}(t)-\boldsymbol{R}^{\prime}(t)\right| \approx \epsilon \times e^{\lambda t}
$$

suggests an exponential dependence on them

- I.e. even knowing $\Phi(\boldsymbol{R})$ exactly still causes an $e^{\lambda t}$ divergence

Neither possible nor desirable to calculate exact trajectories

Molecular Dynamics

- Microcanonical (NVE) ensemble: Number of particles, Volume, and total Energy are conserved
- Natural ensemble to simulate molecular dynamics (follows directly from Hamilton's equation of motion

Molecular Dynamics

- Microcanonical (NVE) ensemble: Number of particles, Volume, and total Energy are conserved
- Natural ensemble to simulate molecular dynamics (follows directly from Hamilton's equation of motion
- Canonical (NVT) ensemble: Number of particles, Volume, and Temperature are conserved
- System in contact with a heat bath (discussed later on)

The Canonical Ensemble

- The idea: couple the system to a thermostat (heat bath)
- Interesting because:
- Experiments are usually done at constant temperature
- Better modeling of conformational changes

Maxwell Distribution

Probability distribution of the kinetic energy:

$$
P\left(E_{k i n}\right) \propto \exp \left(-E_{k i n} / k_{B} T\right)
$$

Thermostats: First Ideas

- Temperature rescaling: Berendsen "thermostat"
- Rescale velocities by a factor containing the ratio of target and instant temperature
- Does not sample the canonical ensemble (wrong temperature distribution)
- "Flying ice-cube" effect: rotations and translations acquire high $E_{k i n}$ and vibrations are frozen

H. J. C. Berendsen, et al. J. Chem. Phys. 813684 (1984)

Thermostats: First Ideas

- Temperature rescaling: Berendsen "thermostat"
- Rescale velocities by a factor containing the ratio of target and instant temperature
- Does not sample the canonical ensemble (wrong temperature distribution)
- "Flying ice-cube" effect: rotations and translations acquire high $E_{k i n}$ and vibrations are frozen

$$
\text { H. J. C. Berendsen, et al. J. Chem. Phys. 8I } 3684 \text { (I984) }
$$

- Simple stochastic idea:Andersen thermostat
- At each $n^{\text {th }}$ time-step, replace velocity of a random particle by one drawn from a Maxwell-Boltzmann distribution at target temperature
- Not very efficient, no conserved quantity
- Very sensitive on n

Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. I26, 014101 (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

$$
\frac{d T}{\bar{T}}=\underbrace{\left[1-\frac{T(t)}{\bar{T}}\right] \frac{d t}{\tau}}_{\substack{\text { Temperature } \\ \text { rescaling }}}-\underbrace{2 \sqrt{\frac{T(t)}{3 \bar{T} N \tau}} \xi(t)}_{\text {White noise }}
$$

Stochastic Velocity Rescaling

G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. I26, 014 IOI (2007).

Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats (accurate!)

Target temperature follows a stochastic differential equation:

$$
\frac{d T}{\bar{T}}=\underbrace{\left[1-\frac{T(t)}{\bar{T}}\right] \frac{d t}{\tau}}_{\substack{\text { Temperature } \\ \text { rescaling }}}-\underbrace{2 \sqrt{\frac{T(t)}{3 \bar{T} N \tau}} \xi(t)}_{\text {White noise }}
$$

- Very successful thermostat, weakly dependent on relaxation time T
- Pseudo-Hamiltonian is conserved

Newton vs. Langevin

Heavy(er) body in a solvent (or gas)

Newtonian dynamics

$\mathbf{F}_{I}=-\nabla_{\mathbf{R}_{I}} V$

Langevin dynamics

Newton vs. Langevin

Heavy(er) body in a solvent (or gas)

Newtonian dynamics

$\mathbf{F}_{I}=-\nabla_{\mathbf{R}_{I}} V$

Langevin dynamics

- In thermal equilibrium, drag of the friction and kicks of the random noise balance each other - Fluctuation Dissipation Theorem (FDT)

$$
\langle\xi(t) \xi(0)\rangle=2 k_{B} T \gamma \delta(t)
$$

Langevin Thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (I976).

Model dynamics via the Langevin equation:
$M_{I} \ddot{\mathbf{R}}_{I}=\mathbf{F}_{I}-\gamma_{I} \dot{\mathbf{R}}_{I}+\xi(t)$
Original system Friction and White Noise

$$
\langle\xi(t) \xi(0)\rangle=2 k_{B} T \gamma \delta(t)
$$

Langevin Thermostat

S.A.Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (1976).

Model dynamics via the Langevin equation:

$$
\left.M_{I} \ddot{\mathbf{R}}_{I}=\mathbf{F}_{I}\right]-\gamma_{I} \dot{\mathbf{R}}_{I}+\xi(t)
$$

Original system Friction and White Noise

$$
\langle\xi(t) \xi(0)\rangle=2 k_{B} T \gamma \delta(t)
$$

- Sensitive on γ
- For systems spanning a wide range of frequencies, how to achieve the "best" critical damping?
- Disturbs dynamics considerably

Molecular Dynamics

- Microcanonical (NVE) ensemble: Number of particles,Volume, and total Energy are conserved
- Natural ensemble to simulate molecular dynamics (follows directly from Hamilton's equation of motion
- Canonical (NVT) ensemble: Number of particles, Volume, and Temperature are conserved
- System in contact with a heat bath (discussed later on)
- Isothermic-Isobaric (NPT) ensemble: Number of particles, Pressure, and Temperature are conserved

Isobaric-Isothermic MD

- Definition of instantaneous pressure:

$$
P=\frac{2}{3 V}\left(E_{\text {kin }}-\Xi\right) \quad \boldsymbol{\Xi}=\sum_{i j} \mathbf{R}_{i j}\left(\nabla_{\mathbf{R}_{i j}} U\right)=-V \widetilde{\sigma}_{\text {Stress Tensor }}
$$

- Similar schemes as thermostats: pressure rescaling, extended Lagrangian, stochastic pressure rescaling Parinello and Rahman, J.Appl. Phys 52, 7182 (I98I); Bussi, Zykova-Timan, Parrinello, J. Chem. Phys. I30, 074IOI (2009)
- Use thermostat together with a barostat to control pressure and temperature

Molecular Dynamics

- Microcanonical (NVE) ensemble: Number of particles, Volume, and total Energy are conserved
- Natural ensemble to simulate molecular dynamics (follows directly from Hamilton's equation of motion
- Canonical (NVT) ensemble: Number of particles, Volume, and Temperature are conserved
- System in contact with a heat bath (discussed later on)
- Isothermic-Isobaric (NPT) ensemble: Number of particles, Pressure, and Temperature are conserved

"Computer experiment": equilibrate system and measure

Electrons

$$
\begin{gathered}
\mathcal{H}_{e}(\boldsymbol{r} ; \boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R})=\varepsilon(\boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R}) \\
M_{I} \ddot{\boldsymbol{R}}_{I}=-\nabla_{\boldsymbol{R}_{I}}\left[\varepsilon(\boldsymbol{R})+V_{K K}(\boldsymbol{R})\right]
\end{gathered}
$$

Born-Oppenheimer MD

$$
\Phi(\boldsymbol{R})=E_{\mathrm{KS}}^{\mathrm{DFT}}\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}\right]+E_{I I}(\boldsymbol{R})=E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}\right]
$$

Born-Oppenheimer Lagrangian

$$
\mathcal{L}_{\mathrm{BO}}\left(\left\{\psi_{i}\right\} ; \boldsymbol{R}, \dot{\boldsymbol{R}}\right)=\frac{1}{2} \sum_{I=1}^{N} M_{I} \dot{\boldsymbol{R}}_{I}^{2}-\left.\min _{\left\{\psi_{i}\right\}} E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}\right]\right|_{\left\{\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}\right\}}
$$

The forces are obtained by solving the Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{R}}_{I}}=\frac{\partial \mathcal{L}}{\partial \boldsymbol{R}_{I}}
$$

Born-Oppenheimer MD

$$
\begin{aligned}
M_{I} \ddot{\boldsymbol{R}}_{I} & =-\nabla_{\boldsymbol{R}_{I}}\left[\left.\min _{\left\{\psi_{i}\right\}} E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}_{I}\right]\right|_{\left\{\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}\right\}}\right] \\
& =-\frac{\partial E}{\partial \boldsymbol{R}_{I}}+\sum_{i, j} \Lambda_{i j} \frac{\partial}{\partial \boldsymbol{R}_{I}}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \\
& -2 \sum_{i} \frac{\partial\left\langle\psi_{i}\right|}{\partial \boldsymbol{R}_{I}}\left[\frac{\partial E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}_{I}\right]}{\partial\left\langle\psi_{i}\right|}-\sum_{j} \Lambda_{i j}\left|\psi_{j}\right\rangle\right]
\end{aligned}
$$

If and only if $\left\langle\psi_{i}\right|$ is an eigenfunction, then

$$
M_{I} \ddot{\boldsymbol{R}}_{I}=-\frac{\partial E}{\partial \boldsymbol{R}_{I}}+\sum_{i, j} \Lambda_{i j} \frac{\partial}{\partial \boldsymbol{R}_{I}}\left\langle\psi_{i} \mid \psi_{j}\right\rangle
$$

However, in general the HF-Theorem can not be assumed

Born-Oppenheimer MD

May be good enough to optimize the geometry, but not for AIMD

Born-Oppenheimer MD BOMD: $\mathrm{C}_{2} \mathrm{H}_{6}$

Born-Oppenheimer MD

- Large integration time steps
- Potential energy on the BO surface
- Expensive optimization of the WF required
- Very stringent SCF convergence requirement

However: $\gg 10^{5}$ electronic structure calculations are required

Car-Parrinello MD

Car-Parrinello MD

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CP}}\left(\left\{\psi_{i}\right\} ; \boldsymbol{R}, \dot{\boldsymbol{R}}\right)= & \frac{1}{2} \mu \sum_{i}\left\langle\dot{\psi}_{i} \mid \dot{\psi}_{i}\right\rangle+\frac{1}{2} \sum_{I=1}^{N} M_{I} \dot{\boldsymbol{R}}_{I}^{2} \\
& -E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}\right]+\sum_{i, j} \Lambda_{i j}\left(\left\langle\psi_{i} \mid \psi_{j}\right\rangle-\delta_{i j}\right) \\
& \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{R}}_{I}}=\frac{\partial \mathcal{L}}{\partial \boldsymbol{R}_{I}} \\
& \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial\left\langle\dot{\psi}_{i}\right|}=\frac{\partial \mathcal{L}}{\partial\left\langle\psi_{i}\right|}
\end{aligned}
$$

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

Car-Parrinello MD

$$
\begin{aligned}
M_{I} \ddot{\mathbf{R}}_{I} & =-\nabla_{\mathbf{R}_{I}}\left[\left.E\left[\left\{\psi_{i}\right\} ; \mathbf{R}\right]\right|_{\left\{\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}\right\}}\right] \\
& =-\frac{\partial E}{\partial \mathbf{R}_{I}}+\sum_{i, j} \Lambda_{i j} \frac{\partial}{\partial \mathbf{R}_{I}}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \\
\mu \ddot{\psi}_{i}(\boldsymbol{r}, t) & =-\frac{\delta E}{\delta\left\langle\psi_{i}\right|}+\sum_{j} \Lambda_{i j}\left|\psi_{j}\right\rangle \\
& =-\hat{H}_{e}\left\langle\psi_{i}\right|+\sum_{j} \Lambda_{i j}\left|\psi_{j}\right\rangle
\end{aligned}
$$

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

Car-Parrinello MD

Beside that it circumvent the SCF cycle, what is so clever about it?

- If μ is sufficiently small, the electrons adiabatically follow the ions
- In this case the metastable state can be sustained and $\ddot{\psi}_{i} \simeq 0$

$$
\frac{\partial E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}_{I}\right]}{\partial\left\langle\psi_{i}\right|}-\sum_{j} \Lambda_{i j}\left|\psi_{j}\right\rangle \simeq 0
$$

- I.e. on ionic timescales the electron oscillations averages out $\Rightarrow\left\langle\psi_{i}\right|$ is an eigenfunction of $\mathcal{H}_{e}^{\mathrm{CP}}$, thus the HF-Theorem holds
- Energies \& Forces are NOT on the BO surface, but are consistent

$$
\frac{d}{d t}\left\{\mathcal{H}_{\mathrm{BO}}+\frac{1}{2} \mu \sum_{i=1}^{M}\left\langle\dot{\psi}_{i} \mid \dot{\psi}_{i}\right\rangle\right\}=\frac{d \mathcal{H}_{\mathrm{CP}}}{d t}=0
$$

Car-Parrinello MD

Vibrational spectra of electrons and ions do not overlap

Triangle $=$ highest ionic frequency

Car-Parrinello MD

Vacancy in a hot 64-atom Si cell

Car-Parrinello MD

64 atoms of molten aluminum

- (a): Without thermostat
- (b): With thermostat

Car-Parrinello MD

Principal task of μ : Coupling between $\dot{\boldsymbol{R}}_{I}$ and $\dot{\psi}_{i}$

$$
\begin{gathered}
\left|\psi_{\mu}(\boldsymbol{r}, t)-\psi_{0}(\boldsymbol{r}, t)\right| \leq C \sqrt{\mu} \\
\Delta t_{\max } \propto \sqrt{\frac{\mu}{\Delta E_{g a p}}}
\end{gathered}
$$

- μ acts as a continuous slider between speed and accuracy
- Typically, the timestep is $\sim 5 \times-10 \times$ smaller than in BOMD
- Depends on the application if either CPMD or BOMD is to favor
- Metals are problematic: Finite electron temperature or thermostats

Desirable to eliminate μ !

BOMD vs. CPMD

	BOMD	CPMD
Energy Conservation	fair	excellent
Iterative Optimization	yes	no
Exactly on the BO-Surface	yes	no
Integration time-step	large	small
Metals and small band-gap	possible	difficult

Second-Generation CPMD

$$
\begin{aligned}
M_{I} \ddot{\boldsymbol{R}}_{I} & =-\nabla_{\boldsymbol{R}_{I}}\left[\left.\min _{\left\{\psi_{i}\right\}} E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}_{I}\right]\right|_{\left\{\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}\right\}}\right] \\
& =-\frac{\partial E}{\partial \boldsymbol{R}_{I}}+\sum_{i, j} \Lambda_{i j} \frac{\partial}{\partial \boldsymbol{R}_{I}}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \\
& -2 \sum_{i} \frac{\partial\left\langle\psi_{i}\right|}{\partial \boldsymbol{R}_{I}}\left[\frac{\partial E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}_{I}\right]}{\partial\left\langle\psi_{i}\right|}-\sum_{j} \Lambda_{i j}\left|\psi_{j}\right\rangle\right]
\end{aligned}
$$

T. D. Kühne, WIREs Comput. Mol. Sci. 4, 391 (2014)

Second-Generation CPMD

$$
\begin{aligned}
M_{I} \ddot{\boldsymbol{R}}_{I} & =-\nabla_{\boldsymbol{R}_{I}}\left[\left.\min _{\left\{\psi_{i}\right\}} E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}_{I}\right]\right|_{\left.\left\{\left\langle\psi_{i}\right| \psi_{j}\right)=\delta_{i j}\right\}}\right] \\
& =-\frac{\partial E}{\partial \boldsymbol{R}_{I}}+\sum_{i, j} \Lambda_{i j} \frac{\partial}{\partial \boldsymbol{R}_{I}}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \\
& -2 \sum_{i} \frac{\partial\left\langle\psi_{i}\right|}{\partial \boldsymbol{R}_{I}}\left[\frac{\partial E\left[\left\{\psi_{i}\right\} ; \boldsymbol{R}_{I}\right]}{\partial\left\langle\psi_{i}\right|}-\sum_{j} \Lambda_{i j}\left|\psi_{j}\right\rangle\right] \\
\frac{d^{2}}{d \tau^{2}}\left|\psi_{i}(\boldsymbol{r}, \tau)\right\rangle & =-\frac{\delta E_{\mathrm{NsC}}}{\delta\left\langle\psi_{i}(\boldsymbol{r}, \tau)\right|}-\gamma \omega \frac{d}{d \tau}\left|\psi_{i}(\boldsymbol{r}, \tau)\right\rangle+\sum_{j} \Lambda_{i j}\left|\psi_{j}(\boldsymbol{r}, \tau)\right\rangle
\end{aligned}
$$

T. D. Kühne and E. Prodan, Annals of Physics 391, 120 (2018)

Second-Generation CPMD

$$
\begin{gathered}
M_{I} \ddot{\boldsymbol{R}}_{I}=\underbrace{\boldsymbol{F}_{I}^{B O}-\gamma_{D} M_{I} \dot{\boldsymbol{R}}_{I}}_{\boldsymbol{F}_{I}^{P C}+\boldsymbol{\Xi}_{I}^{D}}+\boldsymbol{\Xi}_{I}^{D} \\
\left\langle\boldsymbol{\Xi}_{I}^{D}(0) \boldsymbol{\Xi}_{I}^{D}(t)\right\rangle=2 \gamma_{D} M_{I} k_{B} T \delta(t) \\
\left\langle\frac{1}{2} M_{I} \dot{\boldsymbol{R}}_{I}^{2}\right\rangle=\frac{3}{2} k_{B} T
\end{gathered}
$$

T. D. Kühne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)

Second-Generation CPMD

T. D. Kühne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)

Second-Generation CPMD

T. D. Kühne, M. Krack, F. Mohamed and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)
„On-the-fly" Spectroscopy

$$
w_{n}(\mathbf{r}-\mathbf{R})=\frac{V}{(2 \pi)^{3}} \int_{\Omega} d \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{R}} \sum_{m=1}^{J} U_{m n}^{(\mathbf{k})} \psi_{m}^{(\mathbf{k})}(\mathbf{r})
$$

$$
S_{n}=\left\langle w_{n}\right| \mathbf{r}^{2}\left|w_{n}\right\rangle-\left\langle w_{n}\right| \mathbf{r}\left|w_{n}\right\rangle^{2} \Rightarrow A_{n}=\beta S_{n}^{3}
$$

P. Partovi-Azar and T. D. Kühne, J. Comp. Chem. 36, 2188 (2015)

Electrons

$$
\begin{gathered}
\varepsilon(\boldsymbol{R})+V_{K K}(\boldsymbol{R}) \approx \sum_{I} v_{1}\left(\boldsymbol{R}_{I}\right)+\sum_{I<J} v_{2}\left(\boldsymbol{R}_{I}, \boldsymbol{R}_{J}\right)+\ldots \\
{\left[\mathcal{H}_{K}(\boldsymbol{R})+\varepsilon(\boldsymbol{R})\right] \chi(\boldsymbol{R})=E \chi(\boldsymbol{R})}
\end{gathered}
$$

Importance of NQE

- Classically the average value of the kinetic energy follows equipartition (Boltzmann operator factorizes) and is given by

$$
\langle K\rangle=\frac{3 N k_{B} T}{2}
$$

- In quantum mechanics, Boltzmann operator does not factorize (because momentum and position do not commute). E.g. for a system of harmonic oscillators:

$$
\left\langle K_{q m}^{\text {harm }}\right\rangle=\sum_{i} \frac{\hbar \sqrt{k_{i}}}{4 \sqrt{m_{i}}} \operatorname{coth}\left(\frac{\beta \hbar \sqrt{k_{i}}}{2 \sqrt{m_{i}}}\right) \quad \begin{gathered}
\text { mass } \\
\text { dependence }
\end{gathered}
$$

Path-Integral MD

$$
\begin{gathered}
Z=\operatorname{Tr}\left[e^{-\beta \mathcal{H}}\right]=\operatorname{Tr}\left[\left(e^{-\beta_{n} \mathcal{H}_{n}}\right)^{n}\right], \text { mit } \beta_{n}=\frac{\beta}{n} \\
=\lim _{n \rightarrow \infty}\left(\frac{1}{2 \pi \hbar}\right)^{n} \int d^{n} q \int d^{n} p e^{-\beta_{n} H_{n}}, \text { mit } \\
H_{n}=\sum_{I=1}^{N} \sum_{j=1}^{n}[\underbrace{\frac{\boldsymbol{P}_{I}^{2(j)}}{2 M_{L}}}_{E_{k i n}^{(j)}}+\underbrace{\frac{M_{I}}{2} \omega_{n}^{2}\left(\boldsymbol{R}_{I}^{(j)}-\boldsymbol{R}_{I}^{(j-1)}\right)^{2}}_{\text {Harmonic springs between beads }}]+\sum_{j=1}^{n} V \underbrace{V\left(\boldsymbol{R}_{1}^{(j)}, \ldots, \boldsymbol{R}_{N}^{(j)}\right)}_{V_{e x t}^{(j)}}
\end{gathered}
$$

Particle i

Path-Integral MD

- Radius of gyration - the spread in imaginary time. For a free particle the root mean square radius of gyration is:

$$
\left\langle r_{G}^{2}(T)\right\rangle^{1 / 2}=\frac{\Lambda(T)}{\sqrt{8 \pi}} \quad \Lambda(T)=\frac{h}{\sqrt{2 \pi m k_{\mathrm{B}} T}}
$$

- Bead to bead distance. For a free particle the average is:

- Centroid: The centre of the polymer.

$$
q_{c}=\frac{1}{n} \sum_{k=1}^{n} q_{k}
$$

Ring-Polymer MD

Path Integral MD uses ring polymer trajectories to estimate static averages of the form:

$$
\langle A\rangle=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta \hat{H}} \hat{A}\right]
$$

However, many important quantities are given by dynamic averages:

$$
\begin{gathered}
\text { Time correlation function } \\
c_{A B}(t)=\operatorname{Tr}\left[e^{-\beta \hat{H}} \hat{A}(0) \hat{B}(t)\right]
\end{gathered}
$$

Diffusion coefficient

$$
D(T)=\frac{1}{3} \int_{0}^{\infty} c_{\mathbf{v} \cdot \mathbf{v}}(t) d t
$$

IR spectrum (dipole adsorption cross section)

$$
\begin{gathered}
n(\omega) \alpha(\omega)=\frac{\pi \omega}{3 \hbar c V \epsilon_{0}}\left(1-e^{-\beta \hbar \omega}\right) C_{\mu \cdot \mu}(\omega) \\
C_{\mu \cdot \mu}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \omega t} c_{\mu \cdot \mu}(t) d t \\
\text { dipole }
\end{gathered}
$$

PIMD does NOT give access to real time propagation (momenta are fictitious)

Electrons

$$
\begin{aligned}
& \mathcal{H}_{e}(\boldsymbol{r} ; \boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R})=\varepsilon(\boldsymbol{R}) \psi(\boldsymbol{r} ; \boldsymbol{R}) \\
& {\left[\mathcal{H}_{K}(\boldsymbol{R})+\varepsilon(\boldsymbol{R})\right] \chi(\boldsymbol{R})=E \chi(\boldsymbol{R})}
\end{aligned}
$$

Ring Polymer Contraction

Ring Polymer Contraction

$\beta \hbar \omega=5$ at 300 K

Ring Polymer Contraction

Ring Polymer Contraction

$$
\sum_{N_{n}^{\prime}}
$$

T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)

Ring Polymer Contraction

T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)

Ring Polymer Contraction

T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 129, 024105 (2008)

Quantum-RPC

$$
\begin{aligned}
H_{p}^{V}= & \sum_{k=1}^{p}\left[\sum_{I=1}^{N} \frac{M_{I}}{2} \omega_{p}^{2}\left(\boldsymbol{R}_{I}^{(k)}-\boldsymbol{R}_{I}^{(k+1)}\right)^{2}+\min _{\left\{\psi_{i}^{(k)}\right\}} E\left[\left\{\psi_{i}^{(k)}\right\},\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right]\right] \\
= & \sum_{k=1}^{p}\left[\sum_{I=1}^{N} \frac{M_{I}}{2} \omega_{p}^{2}\left(\boldsymbol{R}_{I}^{(k)}-\boldsymbol{R}_{I}^{(k+1)}\right)^{2}\right. \\
& \left.+\left(\min _{\left\{\psi_{i}^{(k)}\right\}} E\left[\left\{\psi_{i}^{(k)}\right\},\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right]+V_{f f}\left(\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right)-V_{f f}\left(\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right)\right)\right] \\
= & \sum_{k=1}^{p}\left[\sum_{I=1}^{N} \frac{M_{I}}{2} \omega_{p}^{2}\left(\boldsymbol{R}_{I}^{(k)}-\boldsymbol{R}_{I}^{(k+1)}\right)^{2}+V_{f f}\left(\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right)\right] \\
& +\sum_{k=1}^{p} \underbrace{\left[\min _{i}^{(k)}\right\}} E\left[\left\{\psi_{i}^{(k)}\right\},\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right]-V_{f f}\left(\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right)] \\
\approx & \sum_{k=1}^{p}\left[\sum_{I=1}^{N} \frac{M_{I}}{2} \omega_{p}^{2}\left(\boldsymbol{R}_{I}^{(k)}-\boldsymbol{R}_{I}^{(k+1)}\right)^{2}+V_{f f}\left(\left\{\boldsymbol{R}_{I}^{(k)}\right\}\right)\right] \\
& +\sum_{k^{\prime}=1}^{p^{\prime}} \frac{p}{p^{\prime}}\left[\min _{\left\{\psi_{i}^{\left(k^{\prime}\right)}\right\}} E\left[\left\{\psi_{i}^{\left(k^{\prime}\right)}\right\},\left\{\boldsymbol{R}_{I}^{\left(k^{\prime}\right)}\right\}\right]-V_{f f}\left(\left\{\boldsymbol{R}_{I}^{\left(k^{\prime}\right)}\right\}\right)\right]
\end{aligned}
$$

C. John, T. Spura, S. Habershon and T. D. Kühne, Phys. Rev. E 93, 043305 (2016)

Coupled Cluster-RPMD

T. Spura, H. Elgabarty and T. D. Kühne, Phys. Chem. Chem. Phys. 17, 14355 (2015)

Coupled Cluster-RPMD

T. Spura, H. Elgabarty and T. D. Kühne, Phys. Chem. Chem. Phys. 17, 14355 (2015)

Water: Quo Vadis DFT?

C. John, T. Spura, S. Habershon and T. D. Kühne, Phys. Rev. E 93, 043305 (2016)

