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Highlights

• Recent trends in extreme-scale HPC paint an uncertain future
– Contemporary systems provide evidence that power constraints are driving architectures to change rapidly
– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, I/O
– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures
– Programming and operating systems need major redesign to address these architectural changes
– Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and benchmarking.

• We need portable programming models and performance prediction now more than ever!

• Programming systems must provide performance portability (beyond functional portability)!!
– Emerging memory hierarchies

• DRAGON – transparent NVM access from GPUs
• NVL-C – user management of nonvolatile memory in C
• Papyrus – parallel aggregate persistent storage

– Heterogeneous processor (not covered today)
• OpenACC->FGPAs
• Clacc – OpenACC support in LLVM

• Performance prediction is critical for design and optimization (not covered today)
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The three technical areas in ECP have the necessary components 
to meet national goals

Application Development (AD) Software
Technology (ST)

Hardware 
and Integration (HI)

Performant mission and science applications @ scale

Foster application 
development

Ease 
of use

Diverse
architectures

HPC
leadership

Integrated delivery of ECP 
products on targeted systems at 
leading DOE computing facilities

Produce expanded and vertically 
integrated software stack to achieve 
full potential of exascale computing

Develop and enhance the predictive 
capability of applications critical to 

the DOE

25 applications ranging from 
national security, to energy, earth 

systems, economic security, 
materials, and data

80+ unique software 
products spanning 

programming models 
and run times, math 
libraries, data and 

visualization

6 vendors supported 
by PathForward

focused on memory, 
node, connectivity 

advancements; 
deployment to facilities
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ORNL 75th Lab Day and Summit Unveiling – 8 June 2018
#1 on Top 500
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National security
Stockpile 

stewardship
Next-generation 
electromagnetics 

simulation of hostile 
environment and 

virtual flight testing for 
hypersonic re-entry 

vehicles 

Energy security
Turbine wind plant 

efficiency
High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design
Materials design for 

extreme 
environments of 
nuclear fission 

and fusion reactors
Design and 

commercialization 
of Small Modular 

Reactors
Subsurface use 

for carbon capture, 
petroleum extraction, 

waste disposal
Scale-up of clean 

fossil fuel combustion
Biofuel catalyst 

design

Scientific discovery
Find, predict, 

and control materials 
and properties

Cosmological probe 
of the standard model 

of particle physics
Validate fundamental 

laws of nature
Demystify origin of 
chemical elements

Light source-enabled 
analysis of protein 

and molecular 
structure and design
Whole-device model 

of magnetically  
confined fusion 

plasmas

Earth system
Accurate regional 

impact assessments 
in Earth system 

models
Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols
Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Economic security
Additive 

manufacturing 
of qualifiable 
metal parts

Reliable and 
efficient planning 
of the power grid
Seismic hazard 
risk assessment
Urban planning

Health care
Accelerate 

and translate 
cancer research

ECP applications target national problems in 6 strategic areas



99

Major Trends in Computing
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Contemporary devices are approaching fundamental limits

I.L. Markov, “Limits on fundamental limits to computation,” Nature, 512(7513):147-54, 
2014, doi:10.1038/nature13570.

Economist, Mar 2016

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted 
MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 9(5):256-68, 1974, 

Dennard scaling has already ended. Dennard observed that voltage and 
current should be proportional to the linear dimensions of a transistor: 2x 
transistor count implies 40% faster and 50% more efficient.
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Business climate reflects this uncertainty, cost, complexity, consolidation
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Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition 
Period

6th wave
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Transition Period Predictions

Optimize Software and 
Expose New 

Hierarchical Parallelism

• Redesign software to 
boost performance 
on upcoming 
architectures

• Exploit new levels of 
parallelism and 
efficient data 
movement

Architectural 
Specialization and 

Integration

• Use CMOS more 
efficiently for our 
workloads

• Integrate components 
to boost performance 
and eliminate 
inefficiencies 

Emerging Technologies

• Investigate new 
computational 
paradigms
• Quantum 
• Neuromorphic
• Advanced Digital
• Emerging Memory 

Devices
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https://www.thebroadcastbridge.com/content/entry/1094/altera-announces-arria-10-2666mbps-ddr4-memory-fpga-interface

Architectural specialization is quickening
• Vendors, lacking Moore’s Law, will need to continue 

to differentiate products (to stay in business)

• Grant that advantage of better CMOS process stalls

• Use the same transistors differently to enhance 
performance

• Architectural design will become extremely 
important, critical

– Dark Silicon
– Address new parameters for benefits/curse of Moore’s 

Law

http://www.wired.com/2016/05/google-tpu-custom-chips/

D.E. Shaw, M.M. Deneroff, R.O. Dror et al., “Anton, a special-purpose machine for molecular dynamics 
simulation,” Communications of the ACM, 51(7):91-7, 2008.

http://www.theinquirer.net/inquirer/news/2477796/intels-nervana-ai-
platform-takes-aim-at-nvidias-gpu-techology

https://fossbytes.com/nvidia-volta-gddr6-2018/

Xilinx ACAP
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Turing Award Lecture on June 4:
A New Golden Age for Computer 
Architecture

• Domain-specific HW/SW Co-Design

• Enhanced Security

• Open Instruction Sets

• Agile Chip Development
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Transition Period will be Disruptive 

• New devices and architectures may not be 
hidden in traditional levels of abstraction

– A new type of CNT transistor may be completely 
hidden from higher levels

– A new paradigm like quantum may require new 
architectures, programming models, and 
algorithmic approaches

• Solutions need a co-design framework to 
evaluate and mature specific technologies

Layer Switch, 3D NVM Approximate Neuro Quantum
Application 1 1 2 2 3
Algorithm 1 1 2 3 3
Language 1 2 2 3 3
API 1 2 2 3 3
Arch 1 2 2 3 3
ISA 1 2 2 3 3
Microarch 2 3 2 3 3
FU 2 3 2 3 3
Logic 3 3 2 3 3
Device 3 3 2 3 3

Adapted from IEEE Rebooting Computing Chart
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HPC Architectures Reflect these Trends
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LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
TBD

LLNL
TBD

LANL/SNL
Cray/Intel  Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]

Jan 2018

Heterogeneous Cores

Deep Memory incl NVM

Plateauing I/O Performance
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During this Sixth Wave transition, Complexity is our major challenge!

Design: How do we design future systems so that they are 
better than current systems on mission applications?

• Entirely possible that the new system will be slower than the old system!
• Expect ‘disaster’ procurements

Programmability: How do we design applications with 
some level of performance portability?

• Software lasts much longer than transient hardware platforms
• Adapt or die
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Final Report on Workshop on Extreme Heterogeneity
1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages
– Intelligent, domain-aware compilers and tools
– Composition of disparate software components

• Managing resources intelligently
– Automated methods using introspection and machine learning
– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance
– Evaluate impact of potential system designs and application mappings
– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony
– Methods for validation on non-deterministic architectures
– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows
– Mapping of science workflows to heterogeneous hardware and software services
– Adapting workflows and services to meet facility-level objectives through learning 

approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756


Emerging Memory Systems
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Memory Systems Started 
Diversifying Several Years Ago
• Architectures

– HMC, HBM/2/3, LPDDR4, GDDR5X, WIDEIO2, 
etc

– 2.5D, 3D Stacking

• Configurations
– Unified memory
– Scratchpads
– Write through, write back, etc
– Consistency and coherence protocols
– Virtual v. Physical, paging strategies

• New devices
– ReRAM, PCRAM, STT-MRAM, 3D-Xpoint

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012.

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance 
Computing,” CiSE, 17(2):73-82, 2015.

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg
https://www.micron.com/%7E/media/track-2-images/content-images/content_image_hmc.jpg?la=en
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Complexity in the Expanding and Diversifying Memory Hierarchy

Image Source: IMEC
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Many Memory Architecture Options under Consideration…

I.B. Peng et al, “Siena: Exploring the Design Space of Heterogeneous Memory Systems,” in SC18, 2018
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NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
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Programming NVM Systems Portably
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NVM Design Choices

• Dimensions
– Integration point
– Exploit persistence

• ACID?
– Scalability
– Programming model

• Our Approaches
– Transparent access to NVM from GPU
– NVL-C: expose NVM to user/applications
– Papyrus: parallel aggregate persistent 

memory
– Many others (See S. Mittal and J. S. Vetter, "A Survey of 

Software Techniques for Using Non-Volatile Memories for 
Storage and Main Memory Systems," in IEEE TPDS 27:5, pp. 
1537-1550, 2016)

http://j.mp/nvm-sw-survey

http://j.mp/nvm-sw-survey
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NVM Opportunities in Applications

• Burst Buffers, C/R

• Persistent data structures like materials 
tables

• In situ visualization and analytics

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

Empirical results show many reasons…
•Lookup, index, and permutation tables
•Inverted and ‘element-lagged’ mass matrices
•Geometry arrays for grids
•Thermal conductivity for soils
•Strain and conductivity rates
•Boundary condition data
•Constants for transforms, interpolation
•MC Tally tables, cross-section materials tables…

http://ft.ornl.gov/eavl


3030

Transparent Runtime Support for NVM 
from GPUs
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DRAGON: API and Integration

31

// Allocate host & device memory
h_buf = malloc(size);
cudaMalloc(&g_buf, size);

while() { // go over all chunks
// Read-in data
f = fopen(filepath, “r”);
fread(h_buf, size, 1, f);

// H2D Transfer
cudaMemcpy(g_buf, h_buf, H2D);

// GPU compute
compute_on_gpu(g_buf);

// Transfer back to host
cudaMemcpy(h_buf, g_buf, D2H);
compute_on_host(h_buf);

// Write out result
fwrite(h_buf, size, 1, f);

}

// mmap data to host and GPU
dragon_map(filepath, size, 

D_READ | D_WRITE, &g_buf);

// Accessible on both host and GPU
compute_on_gpu(g_buf);
compute_on_host(g_buf);

// Implicitly called when program 
exits
dragon_sync(g_buf);
dragon_unmap(g_buf);O

ut
-o

f-
C

or
e 

us
in

g 
C

U
D

A DRAGON

• Similar to NVIDIA’s Unified Memory (UM)
• Enable access to large memory on NVM

• UM is limited by host memory

Notes
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DRAGON Operations: Key Components

• Three memory spaces:
– GPU Mem (GM) as 1st level cache
– Host Mem (HM) as 2nd level cache
– NVM as primary storage

• Modified GPU driver
– Manage data movement & 

coherency

• GPU MMU with HW Page Fault
– Manage GPU virtual memory 

mapping

• Page cache
– Buffer & accelerate data access

32P. Markthub, M.E. Belviranli et al., “DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access,” in SC18, 2018
https://github.com/pakmarkthub/dragon

https://github.com/pakmarkthub/dragon
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Results with Caffe

• Improves capability and productivity
– Larger problem sizes transparently
– Handles irregularity easily
– Surprising performance on applications
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Language support for NVM:
NVL-C - extending C to support NVM
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NVL-C: Portable Programming for NVMM
– Minimal, familiar, programming interface:

– Minimal C language extensions.
– App can still use DRAM.

– Pointer safety:
– Persistence creates new categories of 

pointer bugs.
– Best to enforce pointer safety constraints at 

compile time rather than run time.
– Transactions:

– Prevent corruption of persistent memory in 
case of application or system failure.

– Language extensions enable:
– Compile-time safety constraints.
– NVM-related compiler analyses and 

optimizations.
– LLVM-based:

– Core of compiler can be reused for other 
front ends and languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>
struct list {
int value;
nvl struct list *next;

};
void remove(int k) {

nvl_heap_t *heap
= nvl_open("foo.nvl");

nvl struct list *a
= nvl_get_root(heap, struct list);

#pragma nvl atomic
while (a->next != NULL) {

if (a->next->value == k)
a->next = a->next->next;

else
a = a->next;

}
nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016
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Programming Model: Pointer types (like Coburn et al.)

NVM Heap A ("A.nvl")

NVM Heap B ("B.nvl")

Volatile Memory
(registers, stack, bss, 

heap)

V-to-NV

intra-heap
NV-to-NV

NV-to-V

inter-heap
NV-to-NV

compile-time error

run-time error

avoids dangling pointers when 
memory segments close
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Programming Model: Transactions: MATMUL Example

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
for (; *i<I; ++*i) {

for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)

sum += b[*i][k] * c[k][j];
a[*i][j] = sum;

}
}

}

• Store i in NVM

• Caller initializes *i to 0 when allocated

• To recover after failure, matmul
resumes at old *i

• Problem: failure might have occurred 
before all of a[*i-1] became durable 
in NVM due to buffering and caching
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Programming Model: Transactions: MATMUL Example

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
while (*i<I) {

#pragma nvl atomic heap(heap)
{

for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)
sum += b[*i][k] * c[k][j];

a[*i][j] = sum;
}
++*i;

}
}

}

• nvl atomic pragma specifies explicit 
transaction that computes one row of a

• Transaction guarantees atomicity: both 
*i is incremented and one row of a is 
written durably, or neither

• Incomplete transaction rolled back after 
failure
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Programming Scalable NVM with Papyrus
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Papyrus – Goals and Design

• Massive amounts of NVM in future systems 
will enable distributed persistent data 
structures – just say ‘no’ to I/O

• Papyrus is a novel programming system for 
aggregate NVM in the next generation HPC 
systems
– Parallel Aggregate Persistent - YRU - Storage
– Portable and scalable programming interface

• Private NVM & Shared NVM architectures
• No centralized control

– Papyrus Virtual File System
• Interfaces to standard POSIX API
• Allows for optimization on NVMe, Optane memory, 

etc.
– Papyrus Template Container Library

• C++ template container implementations

*Wikipedia: Papyrus can 
refer to a document 
written on sheets of 
papyrus, an early form of 
a book. 

[1] J. Kim, S. Lee, and J.S. Vetter, “PapyrusKV: a high-performance parallel key-value store for distributed NVM architectures,” in SC17.
[2] J. Kim, K. Sajjapongse, S. Lee, and J.S. Vetter, “Design and Implementation of Papyrus: Parallel Aggregate Persistent Storage,” in IPDPS 2017.
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PapyrusKV: A High-Performance Parallel Key-Value Store for Distributed 
NVM Architectures

• Leverage emerging NVM technologies
– High performance
– High capacity
– Persistence property

• Designed for the next-generation DOE systems
– Portable across local NVM and dedicated NVM 

architectures
– An embedded key-value store (no system-level 

daemons and servers)
– Scalability and performance

• Designed for HPC applications
– MPI/UPC-interoperable
– Application customizability

• Memory consistency models (sequential and relaxed)
• Protection attributes (read-only, write-only, read-write)
• Load balancing

– Zero-copy workflow, asynchronous 
checkpoint/restart

J. Kim, S. Lee, and J. S. Vetter, “PapyrusKV: A High-Performance Parallel Key-Value Store for Distributed NVM Architectures,”
In Proc. of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2017

PapyrusKV stores keys and values in arbitrary 
byte arrays across multiple NVM devices

in a distribute system

PapyrusKV is portable across
local NVM and dedicated NVM architectures
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PapyrusKV Example Get operations

Present design allows remote cache only for RO data.
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ECP Application Case Study 1
Meraculous (UPC)

• A parallel De Bruijin graph construction and traversal for De Novo 
genome assembly
– ExaBiome, Exascale Solutions for Microbiome Analysis, LBNL

Graphic from ExaBiome: Exascale Solutions to Microbiome Analysis (LBNL, LANL, JGI), 2017
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NVM Implications
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Implications

1. Device and architecture trends will have major impacts on HPC in coming decade
1. NVM in HPC systems is real!
2. Entirely possible to have an Exabyte of NVM in upcoming systems!

2. Performance trends of system components will create new opportunities and challenges
1. Winners and losers

3. Sea of NVM allows/requires applications to operate differently
1. Sea of NVM will permit applications to run for weeks without doing I/O to external storage system
2. Applications will simply access local/remote NVM
3. Longer term productive I/O will be ‘occasionally’ written to Lustre, GPFS
4. Checkpointing (as we know it) will disappear

4. Requirements for system design will change
1. Increase in byte-addressable memory-like message sizes and frequencies
2. Reduced traditional IO demands
3. KV traffic could have considerable impact – need more applications evidence
4. Need changes to the operational mode of the system
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Recap

• Recent trends in extreme-scale HPC paint an 
ambiguous future

• Complexity is the next major hurdle
– Heterogeneous compute
– Deep memory with NVM

• New software solutions
– Programming

• Memory
– DRAGON
– NVL-C
– Papyrus

• Heterogeneity
– OpenACC->FPGAs
– Clacc for LLVM

• These changes will have a substantial impact 
on both software and application design

• Visit us
– We host interns and other visitors 

year round

• Jobs in FTG
– Postdoctoral Research Associate in 

Computer Science
– Software Engineer
– Computer Scientist
– Visit http://jobs.ornl.gov

• Contact me vetter@ornl.gov

http://jobs.ornl.gov/
mailto:vetter@ornl.gov
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