

GPU ACCELERATED COMPUTING IN HPC AND IN THE DATA CENTER

Peter Messmer, DATE 2019, March 27 2019

RISE OF GPU COMPUTING

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

NVIDIA POWERS WORLD'S FASTEST SUPERCOMPUTERS

48% More Systems | 22 of Top 25 Greenest

ORNL Summit World's Fastest 27,648 GPUs | 144 PF

LLNL Sierra World's 2nd Fastest 17,280 GPUs | 95 PF

Piz Daint Europe's Fastest 5,704 GPUs| 21 PF

ABCI Japan's Fastest 4,352 GPUs | 20 PF

ENI HPC4 Fastest Industrial 3,200 GPUs | 12 PF

THE NEW HPC MARKET

NVIDIA POWERS 5 OF 6 GORDON BELL NOMINATIONS

GPU Acceleration Critical To HPC At Scale Today

Genomics 2.36 ExaOps Weather 1.13 ExaOps Seismic 1st Soil & Structure Simulation

Material Science 300X Higher Performance Quantum Chromodynamics <1% of Uncertainty Margin

TESLA UNIVERSAL ACCELERATION PLATFORM

Single Platform To Drive Utilization and Productivity

EXPANDING VALUE FOR HPC CUSTOMERS

Partnering With HPC Development Community

MORE PERFORMANCE WITH SAME GPU

ADDING NEW AND IMPROVED TOP APPLICATIONS

CUDA DEVELOPMENT ECOSYSTEM

8 📀 nvidia

NEW PROGRAMMING MODEL FEATURES

INDEPENDENT THREAD SCHEDULING

Communicating Algorithms

Pascal: Lock-Free Algorithms Threads cannot wait for messages

Volta/Turing: Starvation Free Algorithms

Threads may wait for messages

ASYNCHRONOUS TASK GRAPHS

Execution Optimization When Workflow is Known Up-Front

// Basic function to test primality. bool IsPrime(size_t n)

return true;

size t Primes = 0;

return Primes;

(n == 2) return true;

/ Compute primes from 1 to 100,000,000 size_t ComputePrimes()

if (IsPrime(Start))

++Primes

DEFINITION OF A CUDA GRAPH

Graph Nodes Are Not Just Kernel Launches

Sequence of operations, connected by dependencies.

Operations are one of:

Kernel LaunchCUDA kernel running on GPUCPU Function Call Callback function on CPUMemcopy/Memset GPU data managementSub-GraphGraphs are hierarchical

WHAT IS OPENACC

Open Specification Developed by OpenACC.org Consortium

Read more at <u>www.openacc.org/about</u>

The Main Focus	WHO OPENACC IS FOR		
Doma	ain Scientists	Application D	
1. Want to c program	to more science & less ming	Looking for:	
2. Believe t	hat GPUs are hard	 easy code mainte better efficiency, 	
 Need hel start with 	p in learning how to easy GPUs	3. portability	
1 Mostly de	n't have a computer	Mostly computer scie	

Mostly don't have a computer 4. science degree

Application Developers

Looking for:

- 1. easy code maintenance,
- 2. better efficiency,
- 3. portability

Mostly computer scientists

OPENACC GROWING MOMENTUM

Wide Adoption Across Key HPC Codes

Over 100 Apps* Using OpenACC

ANSYS Fluent	GTC
Gaussian	XGC
VASP	ACME
LSDalton	FLASH
MPAS	COSMO
GAMERA	Numeca

VASP

Top Quantum Chemistry and Material Science Code

For VASP, OpenACC is *the* way forward for GPU acceleration. Performance is similar to CUDA, and OpenACC dramatically decreases GPU development and maintenance efforts. We're excited to collaborate with NVIDIA and PGI as an early adopter of Unified Memory.

SINGLE CODE FOR MULTIPLE PLATFORMS

OpenACC - Performance Portable Programming Model for HPC

Systems: Haswell: 2x16 core Haswell server, four K80s, CentOS 7.2 (perf-hsw10), Broadwell: 2x20 core Broadwell server, eight P100s (dgx1-prd-01), Broadwell server, eight V100s (dgx07), Skylake 2x20 core Xeon Gold server (sky-4). Compilers: Intel 2018.0.128, PGI 18.1

Benchmark: CloverLeaf v1.3 downloaded from http://uk-mac.github.io/CloverLeaf the week of November 7 2016; CloverLeaf_Serial; CloverLeaf_ref (MPI+OpenMP); CloverLeaf_OpenACC (MPI+OpenACC) Data compiled by PGI February 2018.

NSIGHT SYSTEMS

System-wide Performance Analysis

Observe Application Behavior: CPU threads, GPU traces, Memory Bandwidth and more

Locate Optimization Opportunities: CUDA & OpenGL APIs, Unified Memory transfers, User Annotations using NVTX

Ready for Big Data: Fast GUI capable of visualizing in excess of 10 million events on laptops, Container support, Minimum user privileges

NVIDIA System Profiler 4.0

File View Help

Select device for profiling.

👻 🍫 🔌 More info..

trace DGX1 TF synthetic ResNet50-with-trace-backtraces.gdrep 🖂 trace DGX1 TF synthetic ResNet50-with-trace-backtraces-all-system-trace-20s.gdrep trace_DGX1V_C2_synthetic_ResNet50-with-trace-backtraces.gdrep Project 2 DGXV8-Im-4GPU. adren

CONTAINERS: SIMPLIFYING WORKFLOWS

WHY CONTAINERS

Simplifies Deployments

- Eliminates complex, time-consuming builds and installs

Get started in minutes

- Simply Pull & Run the app

Portable

- Deploy across various environments, from test to production with minimal changes

NGC CONTAINERS: ACCELERATING WORKFLOWS

WHY CONTAINERS

Simplifies Deployments

- Eliminates complex, time-consuming builds and installs

Get started in minutes

- Simply Pull & Run the app

Portable

- Deploy across various environments, from test to production with minimal changes

WHY NGC CONTAINERS

Optimized for Performance

Monthly DL container releases offer latest features and superior performance on NVIDIA GPUs

Scalable Performance

Supports multi-GPU & multi-node systems for scale-up & scale-out environments

Designed for Enterprise & HPC environments

Supports Docker & Singularity runtimes

Run Anywhere

 Pascal/Volta/Turing-powered NVIDIA DGX, PCs, workstations, servers and top cloud platforms

THE NEW NGC

GPU-optimized Software Hub. Simplifying DL, ML and HPC Workflows

NGC-READY ECOSYSTEM

Now Over 50 GPU-Optimized Containers

RE-IMAGINING DATA SCIENCE WORKFLOW

Open Source, End-to-end GPU-accelerated Workflow Built On CUDA

RAPIDS – OPEN GPU DATA SCIENCE

Software Stack Python

ACCELERATING MACHINE LEARNING The RAPIDS Ecosystem

Open Source Community	Enterprise Data Science Platforms	Startups	Deep Learning Integration
	IBM ORACLE	BLAZINGDB TF FASTDATA G. graphistry	
	Ssas SAP	H ₂ O.ai kinetica MAPR sci	• Chainer PYTÖRCH

RA	PIDS
----	------

		GPU Servers			Storage Partners
uluulu cisco	DØLLEMC	Hewlett Packard Enterprise	IBM	Lenovo	DELLEMC IBM IN NetApp OURESTORAGE

SUMMARY

GPUs are established in HPC and Datacenter

Full stack optimization, not just selling silicon

Improvements and simplification on multiple fronts

- HW: chip, node and system level
- SW: low- and high-level languages, libraries, frameworks, apps

Convergence of HPC and accelerated machine learning in the data center

