
www.inf.ed.ac.ukDATE 2019

Near-Memory Processing:
It’s the SW and HW, stupid!

Boris Grot



Where do we go from here?

The End is Near Here!



An exponential is ending…

10%, 20%, .. improvement in performance 
of component X won’t get you far

– No new transistors
– Fixed power ceiling

Emerging technologies are either 
incremental (e.g., Intel’s Xpoint Memory) 
or cover niche areas (e.g., quantum)

3



The Way Forward: Vertical Integration
Software/hardware co-design
for high efficiency and programmability

Is this always a good idea?

No!

Need high volume for cost-efficiency
Need large perf/Watt gains to be worth 
the effort 

4



This Talk

Vertical integration 
for 

in-memory data analytics

5



Data Analytics Takes Center Stage
User data grows exponentially

– Need to monetize data

In-memory data operators
– Poor locality
– Low computational requirement
– Highly parallel

7



Data Analytics Takes Center Stage
User data grows exponentially

– Need to monetize data

In-memory data operators
– Poor locality
– Low computational requirement
– Highly parallel

Data movement
– High energy cost
– High BW requirement

8
Data movement bottlenecks data analytics



Cost of Moving Data

10

Data access much more expensive than arithmetic operation

DRAMCPU

Memory access
640 pJFixed point Add

0.1 pJ



DRAM BW Bottleneck

11

24 GB/s off-chip BW

Memory Array

Memory Array

Row Buffer100’s of GB/s internally 

DRAMCPU

Internal DRAM BW presents big opportunity



Logic inside DRAM? Not a Good Idea

Fabrication processes not compatible
– DRAM is optimized for density
– Logic is irregular, wire-intensive

In-memory logic failed in the 90s
– DRAM is cost-sensitive

12

DRAM

Memory Array

Memory Array

Logic

Must exploit DRAM in a non-disruptive manner



Near-Memory Processing (NMP)
3D logic/DRAM stack

– Exposes internal BW to processing elements

– But constrains logic layer’s area/power envelope

13

Exploit the bandwidth without data movement

640 pJ
24 GB/s

150 pJ
128 GB/s

Logic

DRAMCPU



How to Best Exploit DRAM BW?
DRAM internals optimized for density
DRAM accesses must activate rows

– Single access activates KBs of data
– Activations dominate access latency & energy

Can’t utilize internal BW with random access
– Need to maintain many open rows
– Complex bookkeeping logic

14

DRAM

Need sequential access to utilize DRAM BW



NMP HW-Algorithm Co-Design

Algorithms: Must have sequential access
– Even if we perform more work

Hardware: Must leverage data parallelism
– On a tight area/power budget

15

HW-algorithm co-design necessary to make best use of NMP



Example data operator: Join

Iterates over a pair of tables to find matching keys

Major operation in data analytics

16

Q: SELECT ... FROM A, B WHERE A.Key = B.Key

Join

A B Result

C
F
A
D
B
E

A
G
Z
C
M
E

A
C
E



Baseline: CPU Hash Join
Best performing algorithm in CPU-centric systems

Performed in two phases: Partition & Probe
1. Partition generates cache sized partitions
2. Probe builds and queries cache resident hash tables

17

Partition

C
F
A
D
B
E

A
D
C

E
F
B

Probe

H
(x
)E

F
B

E
F
B

Optimized for random accesses to cached data



NMP Hash Join

18

To DRAM

NMP

DRAM

C
D
F
E
A
B

C
F
A
D
B
E

H
(
X
)

Goal: maximum MLP
• Limited by bookkeeping logic



19

NMP

DRAM

C
D
F
E
A
B

C
F
A
D
B
E

H
(
X
)&C

&F

C
F

F

C

Poor row buffer utilization

To DRAM

NMP Hash Join



NMP Hash Join

20

To DRAM

NMP

DRAM

C
D
F
E
A
B

C
F
A
D
B
E

H
(
X
)&A

&D

Random accesses are inefficient and under-utilize internal BW



Eliminate Random Access?
Insight: use Sort Join 

– Performs mostly sequential accesses
– But has higher algorithmic complexity

Trade algorithmic complexity for desirable access pattern

21

O(n) random accesses O(n log n) sequential acesses

H
(x

)C
F
A
D

D
C

A
F A

C

D
F

D
F
C
A

Utilizing internal DRAM BW compensates for increased cost

Hash join Sort join



NMP Sort Join: Sequential Accesses

22

base

base

NMP

DRAM

A
C
E
G
B
D
F
H

To DRAM

Drop OoO logic
• Reduces area/power of NMP

Add stream buffer
• Simple logic utilizes BW



NMP Sort Join: Sequential Accesses

23

base

base

NMP

DRAM

2 013

A
C
E
G

2 013 B
D
F
H

To DRAM

&A

&B



NMP Sort Join: Sequential Accesses

24

NMP

DRAM

base &A

base &B
2 013

A
C
E
G

2 013 B
D
F
H&A + 0

&A + 1

To DRAM

&B + 0
&B + 1

Good row buffer utilization



NMP Sort Join: Sequential Accesses

25

base &A

base &B

NMP

DRAM

2 013

A
C
E
G

2 013 B
D
F
H

&A + 0
&A + 1

&B + 0
&B + 1

To DRAM

3

34

4

12

12
&A + 0

&A + 1

&B + 0
&B + 1



NMP Sort Join: Sequential Accesses

26

NMP

DRAM

base &A

base &B
3 24

A
C
E
G

3 24 B
D
F
H

To DRAM

&A + 1

&B + 1

1

1

Sequential access moves bottleneck to compute



NMP Sort Join: Compute

27

base &A

base &B

NMP

DRAM

3 124

To DRAM

3 124

A
C
E
G
B
D
F
H

Use area/power budget for SIMD

General purpose SIMD keeps up with memory BW 



Partitioning Phase
Partitioning basics:

– Each partition contains buckets of objects

– For a given object, target bucket determined using
a hash

– The order of objects within each bucket is 
irrelevant à buckets are unordered

Insight: the order in which tuples are written
into a bucket in the target partition is irrelevant 

28
Partitioning phase: tuples are permutable



Partitioning Phase

Leverage tuple’s permutability property

Turn partition’s random accesses sequential
– Enable use of SIMD during partition

29



Mondrian
Algorithm + hardware co-design for near-memory 
processing of data analytics

NMP Algorithms 
– Use sequential memory accesses
– Avoid random memory accesses
– Target partitioning and compute phases

NMP Harware
– High memory parallelism using simple SIMD hardware
– Exploit sequential memory accesses

30



Big data operators:

– Scan

– Join 

– Group By

– Sort

Memory subsystem:

• 4 HMC stacks

– 20 GB/s external BW

– 128 GB/s internal BW

Simulated systems:

• CPU-centric: ARM Cortex-A57

– 16 cores

– 3-wide,128-entry ROB @ 2GHz

• NMP: Mobile ARM core

– 16 cores per stack

– 3-wide, 48-entry ROB @ 1GHz

• Mondrian: SIMD in-order

– 16 cores per stack

– 1024-bit SIMD @ 1GHz

Methodology

31

Flexus cycle accurate simulator [Wenisch’06]



Evaluation: Performance

32

1

10

100

Scan Sort Group by Join

Sp
ee

du
p 

(lo
g s

ca
le)

Operator

NMP Mondrian



Evaluation: Performance

33

1

10

100

Scan Sort Group by Join

Sp
ee

du
p 

(lo
g s

ca
le)

Operator

NMP Mondrian

Mondrian achieves superior BW utilization



Evaluation: Performance

34

1

10

100

Scan Sort Group by Join

Sp
ee

du
p 

(lo
g s

ca
le)

Operator

NMP Mondrian

NMP can’t utilize memory BW with random accesses



Evaluation: Performance

35

1

10

100

Scan Sort Group by Join

Sp
ee

du
p 

(lo
g s

ca
le)

Operator

NMP Mondrian

Mondrian BW utilization compensates for extra log(n) work



Summary
End of technology scaling à must think vertical

– Software + hardware co-design

Big data analytics are a critical workload
– Large datasets, little locality à memory bottleneck!

Moving compute near memory improves performance
– But need to conform to DRAM constraints

Mondrian is algorithm-hardware NMP for analytics
– Adapt algorithms/HW to DRAM constraints
– Sequential rather than random memory access
– Simple hardware to exploit memory bandwidth

36



inf.ed.ac.uk/bgrot

Thank you!

Questions?

37



Mondrian Energy Efficiency

38

1

10

100

Scan Sort Group by JoinEf
fic

ie
nc

y 
Im

pr
ov

em
en

t
(p

er
fo

rm
an

ce
/e

ne
rg

y)

Operator

NMP-OoO Mondrian


