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Near-Memory Processing:
It’s the SW and HW, stupid!

Boris Grot



Where do we go from here?

The End is Near Here!



An exponential is ending…

10%, 20%, .. improvement in performance 
of component X won’t get you far

– No new transistors
– Fixed power ceiling

Emerging technologies are either 
incremental (e.g., Intel’s Xpoint Memory) 
or cover niche areas (e.g., quantum)
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The Way Forward: Vertical Integration
Software/hardware co-design
for high efficiency and programmability

Is this always a good idea?

No!

Need high volume for cost-efficiency
Need large perf/Watt gains to be worth 
the effort 

4



This Talk

Vertical integration 
for 

in-memory data analytics
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Data Analytics Takes Center Stage
User data grows exponentially

– Need to monetize data

In-memory data operators
– Poor locality
– Low computational requirement
– Highly parallel
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Data Analytics Takes Center Stage
User data grows exponentially

– Need to monetize data

In-memory data operators
– Poor locality
– Low computational requirement
– Highly parallel

Data movement
– High energy cost
– High BW requirement
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Data movement bottlenecks data analytics



Cost of Moving Data
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Data access much more expensive than arithmetic operation

DRAMCPU

Memory access
640 pJFixed point Add

0.1 pJ



DRAM BW Bottleneck
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24 GB/s off-chip BW

Memory Array

Memory Array

Row Buffer100’s of GB/s internally 

DRAMCPU

Internal DRAM BW presents big opportunity



Logic inside DRAM? Not a Good Idea

Fabrication processes not compatible
– DRAM is optimized for density
– Logic is irregular, wire-intensive

In-memory logic failed in the 90s
– DRAM is cost-sensitive
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DRAM

Memory Array

Memory Array

Logic

Must exploit DRAM in a non-disruptive manner



Near-Memory Processing (NMP)
3D logic/DRAM stack

– Exposes internal BW to processing elements

– But constrains logic layer’s area/power envelope
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Exploit the bandwidth without data movement

640 pJ
24 GB/s

150 pJ
128 GB/s

Logic

DRAMCPU



How to Best Exploit DRAM BW?
DRAM internals optimized for density
DRAM accesses must activate rows

– Single access activates KBs of data
– Activations dominate access latency & energy

Can’t utilize internal BW with random access
– Need to maintain many open rows
– Complex bookkeeping logic
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DRAM

Need sequential access to utilize DRAM BW



NMP HW-Algorithm Co-Design

Algorithms: Must have sequential access
– Even if we perform more work

Hardware: Must leverage data parallelism
– On a tight area/power budget
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HW-algorithm co-design necessary to make best use of NMP



Example data operator: Join

Iterates over a pair of tables to find matching keys

Major operation in data analytics
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Q: SELECT ... FROM A, B WHERE A.Key = B.Key

Join

A B Result
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Baseline: CPU Hash Join
Best performing algorithm in CPU-centric systems

Performed in two phases: Partition & Probe
1. Partition generates cache sized partitions
2. Probe builds and queries cache resident hash tables
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Optimized for random accesses to cached data



NMP Hash Join
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To DRAM
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Goal: maximum MLP
• Limited by bookkeeping logic
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NMP Hash Join
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Random accesses are inefficient and under-utilize internal BW



Eliminate Random Access?
Insight: use Sort Join 

– Performs mostly sequential accesses
– But has higher algorithmic complexity

Trade algorithmic complexity for desirable access pattern
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O(n) random accesses O(n log n) sequential acesses
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Utilizing internal DRAM BW compensates for increased cost

Hash join Sort join



NMP Sort Join: Sequential Accesses
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To DRAM

Drop OoO logic
• Reduces area/power of NMP

Add stream buffer
• Simple logic utilizes BW



NMP Sort Join: Sequential Accesses
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NMP Sort Join: Sequential Accesses
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NMP Sort Join: Sequential Accesses
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NMP Sort Join: Sequential Accesses
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NMP Sort Join: Compute

27

base &A

base &B

NMP

DRAM

3 124

To DRAM

3 124

A
C
E
G
B
D
F
H

Use area/power budget for SIMD

General purpose SIMD keeps up with memory BW 



Partitioning Phase
Partitioning basics:

– Each partition contains buckets of objects

– For a given object, target bucket determined using
a hash

– The order of objects within each bucket is 
irrelevant à buckets are unordered

Insight: the order in which tuples are written
into a bucket in the target partition is irrelevant 
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Partitioning phase: tuples are permutable



Partitioning Phase

Leverage tuple’s permutability property

Turn partition’s random accesses sequential
– Enable use of SIMD during partition
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Mondrian
Algorithm + hardware co-design for near-memory 
processing of data analytics

NMP Algorithms 
– Use sequential memory accesses
– Avoid random memory accesses
– Target partitioning and compute phases

NMP Harware
– High memory parallelism using simple SIMD hardware
– Exploit sequential memory accesses
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Big data operators:

– Scan

– Join 

– Group By

– Sort

Memory subsystem:

• 4 HMC stacks

– 20 GB/s external BW

– 128 GB/s internal BW

Simulated systems:

• CPU-centric: ARM Cortex-A57

– 16 cores

– 3-wide,128-entry ROB @ 2GHz

• NMP: Mobile ARM core

– 16 cores per stack

– 3-wide, 48-entry ROB @ 1GHz

• Mondrian: SIMD in-order

– 16 cores per stack

– 1024-bit SIMD @ 1GHz

Methodology
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Flexus cycle accurate simulator [Wenisch’06]



Evaluation: Performance
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Evaluation: Performance
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Evaluation: Performance
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Evaluation: Performance
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Summary
End of technology scaling à must think vertical

– Software + hardware co-design

Big data analytics are a critical workload
– Large datasets, little locality à memory bottleneck!

Moving compute near memory improves performance
– But need to conform to DRAM constraints

Mondrian is algorithm-hardware NMP for analytics
– Adapt algorithms/HW to DRAM constraints
– Sequential rather than random memory access
– Simple hardware to exploit memory bandwidth
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Thank you!

Questions?

37



Mondrian Energy Efficiency
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