Heterogeneous Compute Architectures For Deep Learning In The Cloud

Ken O'Brien, **Nicholas Fraser**, Michaela Blott 27th March 2019

>Why FPGAs?

> Deep Learning: Challenges & Solutions

>FINN

> FPGAs to ACAPs

Mega-Trend: Explosion of Data

- > Astronomically growing amounts of data
 - >> More sensors
 - >> More users
 - >> More use cases: Genomics (DNA) "Genomical"

We need significantly more compute resources to process and extract patterns / insights from this data!

Stephens, Zachary D., et al. "Big data: astronomical or genomical?."

Technology: End of Moore's Law & Dennard Scaling

Economics become questionable

Power dissipation becomes problematic

Era of Heterogeneous Compute using Accelerators

> Diversification of increasingly heterogenous devices and system

>> Moving away from standard van Neumann architectures

> True Architectural innovation & Unconventional Computing Systems

Deep Learning
- customized precision arithmetic

What's the Challenge? Example: Convolutional Neural Networks *Forward Pass (Inference)*

Basic arithmetic, incredible parallel but Huge Compute and Memory Requirements

Compute and Memory for Inference

Floating Point to Reduced Precision Neural Networks Deliver Competitive Accuracy

Reducing Precision *Scales Performance & Reduces Memory*

> Reducing precision shrinks LUT cost

>> Instantiate **100x** more compute within the same fabric

> Potential to reduce memory footprint

>> NN model can stay on-chip => no memory bottlenecks

Precision	Modelsize [MB] (ResNet50)	
1b	3.2	
8b	25.5	
32b	102.5	

Reducing Precision Inherently Saves Power

FPGA:

Target Device ZU7EV • Ambient temperature: 25 °C • 12.5% of toggle rate • 0.5 of Static Probability • Power reported for PL accelerated block only

ASIC:

			Relati	ve Energ	y Cost		
Operation:	Energy (pJ)						
8b Add	0.03						
16b Add	0.05						
32b Add	0.1						
16b FP Add	0.4						
32b FP Add	0.9						
8b Mult	0.2						
32b Mult	3.1						
16b FP Mult	1.1						
32b FP Mult	3.7						
32b SRAM Read (8KB)	5						
32b DRAM Read	640						
		1	10	100	1000	10000	
Source: Bill Dally (Stanford), Cadence Embedded Neural Network Summit, February 1, 2017							

Note: Section 2017 Strain Straight S

Design Space Trade-Offs

E XILINX

Scaling with FINN

FINN – Tool for Exploration of NNs of FPGAs

> Design Flow Tool for Quantized Neural Networks

- >> Rapid access to network structure and compute/memory footprint statistics
- >> Performance prediction for target device
- >> Automatic architecture scaling and generation for target device

> Multi-stage tool-flow

- >> Frontend
- >> Design Space Exploration
- >> Backend

> Binary Network Release Available

https://github.com/Xilinx/FINN

E XILINX.

E XILINX.

Frontend Stage – Import and Network Statistics

Design Space Exploration Stage: Balanced Dataflow

Convolutional Layer – Folding

Design Space Exploration Stage: Balanced Dataflow

Vivado HLS – QNN Library

template<

// convolution parameters unsigned int ConvKernelDim, unsigned int IFMChannels, unsigned int IFMDim, unsigned int OFMChannels, // unsigned int OFMDim, unsigned int Stride,

// matnix_vector unit nanameters

// e.g 3 for a 3x3 conv kernel (assumed square)
// number of input feature maps
// width of input feature map (assumed square)
// number of output feature maps
// IFMDim-ConvKernelDim+1 or less

> Layer-specific configuration values

- Support to multiple padding, in this case same

// macrix-vector unite parameters	
unsigned int SIMDWidth,	// number of SIMD lanes
unsigned int PECount,	// number of PEs
unsigned int WMemCount,	<pre>// entries in each PEs weight memory</pre>
unsigned int TMemCount,	// entries in each PEs threshold memory

// precision parameters

unsigned int WeightsPrecision, // Number of bits in thresholds unsigned int ThresholdPrecision, // Number of bits in thresholds unsigned int MacPrecision, // MAC bitwidth unsigned int Input_precision, // Input data bitwidth unsigned int ActivationPrecision, //Output data bitwidth unsigned int ActivationType=0, template<int> class type_input = ap_uint // For first layer use int value > Implementation-specific parallelism values

Folding factors

> Precision configuration values

 Independent precision for input/output activations and weights and signed/unsigned math

EXILINX

>

void ConvolutionalLayer_Same_Batch(stream<ap_uint<IFMChannels * Input_precision> > & in,

Backend Stage - Hardware/ Runtime Generation

Hardware Generation – Network Dataflow Example

> top.cpp

>> Sequence of layers, 1:1 with network topology

StreamingFxdConvLayer_Batch<L0_K, L0_IFM_CH, L0_IFM_DIM, L0_OFM_CH, L0_OFM_DIM, 8, 1, L0_SIMD, L0_PE, 24, 16, L0_WMEM, L0_TMEM>(i
StreamingConvLayer_Batch<L1_K, L1_IFM_CH, L1_IFM_DIM, L1_OFM_CH, L1_OFM_DIM, L1_SIMD, L1_PE, 16, L1_WMEM, L1_TMEM>(inter1, inter2,
StreamingMaxPool_Batch<L1_OFM_DIM, 2, L1_OFM_CH>(inter2, inter3, numReps);

StreamingConvLayer_Batch<L2_K, L2_IFM_CH, L2_IFM_DIM, L2_OFM_CH, L2_OFM_DIM, L2_SIMD, L2_PE, 16, L2_WMEM, L2_TMEM>(inter3, inter4, StreamingConvLayer_Batch<L3_K, L3_IFM_CH, L3_IFM_DIM, L3_OFM_CH, L3_OFM_DIM, L3_SIMD, L3_PE, 16, L3_WMEM, L3_TMEM>(inter4, inter5, StreamingMaxPool_Batch<L3_OFM_DIM, 2, L3_OFM_CH>(inter5, inter6, numReps);

StreamingConvLayer_Batch<L4_K, L4_IFM_CH, L4_IFM_DIM, L4_OFM_CH, L4_OFM_DIM, L4_SIMD, L4_PE, 16, L4_WMEM, L4_TMEM>(inter6, inter7, StreamingConvLayer_Batch<L5_K, L5_IFM_CH, L5_IFM_DIM, L5_OFM_CH, L5_OFM_DIM, L5_SIMD, L5_PE, 16, L5_WMEM, L5_TMEM>(inter7, inter8, b))

// fully connected layers

StreamingFCLayer_Batch<256, 64, L6_SIMD, L6_PE, 16, L6_MW, L6_MH, L6_WMEM, L6_TMEM>(inter8, inter9, weightMem6, thresMem6, numReps); StreamingFCLayer_Batch<64, 64, L7_SIMD, L7_PE, 16, L7_MW, L7_MH, L7_WMEM, L7_TMEM>(inter9, inter10, weightMem7, thresMem7, numReps);

StreamingFCLayer_NoActivation_Batch<64, 64, L8_SIMD, L8_PE, 16, L8_MW, L8_MH, L8_WMEM>(inter10, memOutStrm, weightMem8, numReps);

> config.h

Finn-generated configuration, with network configuration values + parallelism-specific values

> (possible) params.h

>> Finn-generated weights values to be hardcoded in the bitstream

// layer 0 (conv) // layer config Using peCount = 16 simdCount = 3 for engine 0 Extracting conv-BN complex, OFM=64 IFM=3 k=3 Layer 0: 64 x 27 WMem = 36 TMem = 4*/ #define L0_K 3 #define L0 IFM CH 3 #define L0_IFM_DIM 32 #define L0 OFM CH 64 #define L0_OFM_DIM 30 // hardware config #define L0 SIMD 3 #define L0 PE 16 #define L0 WMEM 36 #define L0 TMEM 4 // layer 1 (conv) // layer config /* Using peCount = 32 simdCount = 32 for engine 1 Extracting conv-BN complex, OFM=64 IFM=64 k=3 Laver 1: 64 x 576 WMem = 36 TMem = 2*/ #define L1_K 3 #define L1 IFM CH 64 #define L1_IFM_DIM 30 #define L1 OFM CH 64 #define L1_OFM_DIM 28 // hardware config #define L1_SIMD 32 #define L1 PE 32 #define L1_WMEM 36 #define L1 TMEM 2

S XII INX

Scaling Parallelism

> For each layer, set all SIMD, PE to 1

– Single MAC

Until hardware no longer fits on device or FPS target reached

- Find slowest layer

Increase SIMD to next factor of IFM_CHANS or

Increase PE to next factor of OFM_CHANS

Goal: Calculate folding factors such that layers produce balanced dataflow

FINN *Performance Results*

Network	Platform	Precision (W/A)	Performance (TOPS)
MLP	AWS-F1	1/1	50.8
CNV	AWS-F1	1/1	12.1
Tincy-YOLO	AWS-F1	1/3	5.3
DoReFa-Net/PF	AWS-F1	1/2	11.4

> Up to 50TOPS measured performance for BNNs

> Multiple precision types supported

» 8-bit in DSPs, reduced precision in LUTs

From FPGAs to ACAPs

New Heterogeneous Devices

> From the Xilinx World: Evolution of FPGAs to ACAPs

E XILINX.

Conclusions

- > As Moore's law has ended, heterogeneous accelerated systems have emerged
- > High computational demand of machine learning applications is driving hardware development
- > Customized dataflow architectures and memory subsystems, custom precisions
 - Dramatic performance scaling and energy efficiency benefits
 - Target Datacenter or Embedded devices
 - Enabling new exciting trade-offs within the design space
- > New ACAP devices with AI engines

Thanks!

Adaptable. Intelligent.

>> 3

