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Mega-Trend:

Explosion of Data

˃ Astronomically growing amounts of data

More sensors

More users

More use cases: Genomics (DNA) “Genomical”
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Stephens, Zachary D., et al. 
"Big data: astronomical or genomical?."

1 0.1 2

21

0

5

10

15

20

25

Astronomy Twitter YouTube Genomics

S
to

ra
g

e
 E

x
a

B
y
te

s
/y

e
a

r

Data Acquisition in 2025

We need significantly more compute 
resources to process and extract patterns / 
insights from this data!



Technology: 

End of Moore’s Law & Dennard Scaling

Economics become questionable Power dissipation becomes problematic



TechnologyTrends

Era of Heterogeneous Compute using Accelerators
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˃ Diversification of increasingly heterogenous devices and system

Moving away from standard van Neumann architectures

˃ True Architectural innovation & Unconventional Computing Systems



Deep Learning

- customized precision arithmetic



Cat?

Input Image

What’s the Challenge?
Example: Convolutional Neural Networks
Forward Pass (Inference)

Neural Network Neural Network

For ResNet50:
70 Layers
7.7 Billion operations 
25.5 millions of weights 
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Basic arithmetic, incredible parallel but Huge Compute and Memory  Requirements



Compute and Memory for Inference

Inference (1 input)
GOPS

average

Inference (1 input)
MBytes

average

Spectrum of Neural Networks

MLP ImageNet Classification CNNs
Object 

Detection
Semantic 

Segmentation
OCR

Speech 
Recognition

*architecture independent
**1 image forward 
*** batch = 1
**** int8

Huge Compute and Memory  Requirements & Variations
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BNN CNN Reduced Precision Internal

Floating Point to Reduced Precision Neural Networks 
Deliver Competitive Accuracy

Float point improvements are slowing down

Reduced precision competitive accuracy



Reducing Precision
Scales Performance & Reduces Memory

˃ Reducing precision shrinks LUT cost

Instantiate 100x more compute within the same fabric

˃ Potential to reduce memory footprint

NN model can stay on-chip => no memory bottlenecks

Precision Modelsize 

[MB]

(ResNet50)

1b 3.2

8b 25.5

32b 102.5

C= size of accumulator *
size of weight * 
size of activation



Reducing Precision Inherently Saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural 

Network Summit, February 1, 2017

Target Device ZU7EV ● Ambient temperature: 25 °C ● 12.5% of toggle rate ● 0.5 of Static 

Probability ● Power reported for PL accelerated block only
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LSTM - Test Error vs Power(W)

Bits (W/A)

Pareto Optimal
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Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-
off Analysis for Variable Precision LSTM Networks on FPGAs."

FPGA:

ASIC:
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1b weights 2b weights 5bit weights 8bit weights FP weights minifloat ResNet-50 Syq

Design Space Trade-Offs

Resnet18
8b/8b
Compute Cost 286
Error 10.68%

Resnet50
2b/8b
Compute Cost 127
Error 9.86%

Reduced Precision can
• reduce cost / resources
• save power
• scale performance

Pareto-optimal solutions



Scaling with FINN
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˃ Design Flow Tool for Quantized Neural Networks

Rapid access to network structure and compute/memory footprint statistics

Performance prediction for target device 

Automatic architecture scaling and generation for target device

˃ Multi-stage tool-flow

Frontend

Design Space Exploration

Backend

˃ Binary Network Release Available

https://github.com/Xilinx/FINN
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FINN –Tool for Exploration of NNs of FPGAs 

https://github.com/Xilinx/FINN


HW Architecture – Dataflow

Layer 0

…

Input image

Weight 

buffer
Weight 

buffer
Weight 

buffer

Inference output
Layer 1 Layer X-1



HW Architecture – Dataflow

Layer 0

…

Input image

Weight 

buffer
Weight 

buffer
Weight 

buffer

Inference output
Layer 1 Layer X-1

Weight buffering in on-chip memory

• High operational intensity for 

inference

Small intermediate buffer for feature 

maps

• No data reordering between layers

• Multi-line buffering for convolutions

• Low latency, high throughput



HW Architecture – Dataflow

Layer 0

DSP
…

Input image

Weight 

buffer
Weight 

buffer
Weight 

buffer

Inference output
Layer 1

LUT-MAC

Layer X-1

1 Compute engine per layer

• Ad-hoc arithmetic according to layer 

quantization



HW Architecture – Dataflow

Layer 0

DSP
…

Input image

Weight 

buffer
Weight 

buffer
Weight 

buffer

Inference output

Layer 1

LUT-MAC

Layer X-1

1 Compute engine per each layer

• Adjust parallelism with compute 

requirements

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PE

PE PE



Per layer operations                  

Topology summary
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Frontend Stage – Import and Network Statistics 

Neural Network 

Description

(Prototxt)

FINN



Device 

Specification File

Folding Factor Calculation

Performance Prediction
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Design Space Exploration Stage: Balanced Dataflow

Neural Network 

Description

FINN
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Convolutional Layer – Folding

Height

Width

Channels

.

.

.

.

SIMD

P
E

PE
SIMD

Input Feature Map Output Feature MapWeights



Folding Factor Calculation

Performance Prediction

Device 

Specification File
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Design Space Exploration Stage: Balanced Dataflow

Neural Network 

Description

FINN

1: Given a target FPS, what 

resources are required?

2: Given total resources, what 

FPS can be achieved?
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Vivado HLS – QNN Library

Layer-specific configuration values

– Support to multiple padding, in this case same 

Implementation-specific parallelism values

– Folding factors

Precision configuration values

– Independent precision for input/output activations and 

weights and signed/unsigned math



Device 

Specification   File

Hardware Generation
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Backend Stage - Hardware/ Runtime Generation

Neural Network 

Description

FINN

FINN QNN Library

Optimal 

Folding Factors



˃ top.cpp 

Sequence of layers, 1:1 with network topology

˃ config.h

Finn-generated configuration, with network configuration values + 
parallelism-specific values

˃ (possible) params.h

Finn-generated weights values to be hardcoded in the bitstream 
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Hardware Generation – Network Dataflow Example
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Scaling Parallelism

For each layer, set all SIMD, PE to 1 

– Single MAC

Until hardware no longer fits on device or FPS 

target reached

– Find slowest layer

• Increase SIMD to next factor of IFM_CHANS or

• Increase PE to next factor of OFM_CHANS

Goal: Calculate folding factors 

such that layers produce 

balanced dataflow



FINN
Performance Results

˃ Up to 50TOPS measured

performance for BNNs

Network Platform Precision (W/A) Performance (TOPS)

MLP AWS-F1 1/1 50.8

CNV AWS-F1 1/1 12.1

Tincy-YOLO AWS-F1 1/3 5.3

DoReFa-Net/PF AWS-F1 1/2 11.4

˃ Multiple precision types supported

8-bit in DSPs, reduced precision in 
LUTs

Blott, M., et al. "FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks"



From FPGAs to ACAPs
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New Heterogeneous Devices
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NOC

Programmable Logic

Processing

System

I/O 
(GT, AMS)

AI Engines

SW PE SW PE SW PE

SW PE SW PE SW PE

LUT BRAM

DSP URAM

Application

Processor

Real-Time

Processor

Transceivers

PCIe

DDR

HBM

AMS

˃ From the Xilinx World: Evolution of FPGAs to ACAPs

Up to ~147 TOPS of Int8 
performance!



Conclusions

˃ As Moore’s law has ended, heterogeneous accelerated systems have emerged 

˃ High computational demand of machine learning applications is driving hardware 

development

˃ Customized dataflow architectures and memory subsystems, custom precisions

• Dramatic performance scaling and energy efficiency benefits

• Target Datacenter or Embedded devices

• Enabling new exciting trade-offs within the design space

˃ New ACAP devices with AI engines
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Adaptable.

Intelligent.
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Thanks!


