
||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 1

Fabian Schuiki1, Michael Schaffner1, Luca Benini1,2

ETH Zurich1 and University of Bologna2

NTX: An Energy-efficient Streaming Accelerator for Floating-
point Generalized Reduction Workloads in 22nm FD-SOI

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 2

Machine Learning @ Cloud

2
[Xu et all. Nature Electronics Apr 18]

Exponential Complexity growth!

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 3

ML: HW reinassance!

3

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 4

DNN training as a workload

 Inference
 Well covered
 Compute layer, only keep results, advance

 Training
 Long data dependency chain
 Intermediate results must be stored
 Cannot fuse ReLU with convolution
 Derivatives tricky (ReLU, Maxpool)

 Offloading
 Convolution needs 6 loops
 Accelerator must have high autonomy
 Processor cores orchestrate training + higher precision & dynamic range requirements!

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 5

Downside of GPUs for Training

 GPUs are the workhorse of data center DNN training
 They generally have a TDP of 200-300 W
 Peak compute reaches 15 Tflop/s these days

 Only 4.9% of that power estimated to be spent in the FPUs [1]:
 [1] reports 2.9%, but their kernels don’t reach TDP/max perf.
 In dubio pro Invidia: We scale power to assume modern GPUs can

reach TDP at max perf. (making them more efficient).

 In practice GPU efficiency hard to estimate:
 GPUs may not be able to reach max compute before hitting TDP

[1] S. Hong and H. Kim, “An integrated gpu power and performance model,” in ACM SIGARCH Computer Architecture News, 2010.

Graph extracted and cropped from [1].

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 6

Network Training Accelerator (NTX)

[1] Schuiki et al, “A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets,”, in IEEE TC 2019.
[2] Azarkhish et al, "Neurostream: Scalable and energy efficient deep learning with smart memory cubes,” in IEEE TPDS 2018.

 We propose NTX [1]
 Streaming floating-point co-processor
 Efficiently performs float32 FMAC
 Fast multiply-accumulate, single cycle

 Address generation unit ensures low control overhead
 5 nested hardware loops
 3 address generators

 Many common C/C++ loop nests map well to this architecture
 8 NTX paired up per associated processor core
 Floating-point operation makes accelerator a drop-in

replacement for GPUs for training.
 Based on lessons learned from Neurostream [2]

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 7

 Main data path is a single-cycle partial
carry save FMA

 Expansion of float operands to fixed-point
 Multiplication and addition in fixed-point
 Single-cycle
 Tuneable performance by increasing number of

partial sums
 Conversion to float after accumulation
 Partial sums are accumulated
 Conversion from fixed-point to float

 Heavily pipelined

Architecture FMAC

a

b
c

z

32 bit float

≈300 bit fixed-point
32 bit float

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 8

 FMA operands arrive as memory streams
 Maskable to 0/1 to disable add/mul

 Optional ReLU on FMA result
 Comparator for finding max/min
 Index counter for finding argmax/argmin
 Enables maxpool derivatives

 Output can be masked to 0/1
 Enables ReLU derivatives

 Fire-and-forget datapath
 Command pushed into FIFO
 Consumes fixed number of input items
 Produces fixed number of output items

Architecture Data Path

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 9

Architecture Address Generation

Used as read addresses Used as write address 5 nested hardware loop counters
 16 bit counter register
 Configurable number of iterations
 Once last iteration reached:
 Reset counter to 0
 Enable next counter for one cycle

 3 address generation units
 32 bit address register
 Each has 5 configurable strides, one per loop
 One stride added to register per cycle
 Stride corresponds to the highest enabled loop

 Allows for complex address patterns

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 10

Architecture Coprocessor
 Processor configures operation via memory-mapped registers
 Controller issues AGU, HWL, and FPU micro-commands based on configuration
 Reads/writes data via 2 memory ports (2 operand and 1 writeback streams)
 FIFOs help buffer data path and memory latencies

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 11

Architecture Processing Cluster
 1 processor core controls 8 NTX coprocessors
 Attached to 128 kB shared TCDM via a logarithmic interconnect
 DMA engine used to transfer data (double buffering)
 Multiple clusters connected via interconnect (crossbar/NoC)

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 12

Architecture HMC Integration
 HMC is split into independent vaults (DRAM controllers)
 Main interconnect routes traffic between serial links and vaults
 Clusters attach to this interconnect
 Full view of the HMC memory space
 Access to other HMCs via serial links

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 13

N
TXLevel 0

Level 1
Level 2

Level 3
Level 4

 Up to 5 nested loops can be offloaded to NTX
 Loops should describe a reduction for best performance
 Covers convolutions, fully connected layers, and more

 Accumulator initialization and writeback is configurable
 For example a DNN convolution:

Programming Model Loops

for (int k = 0; k < K; ++k)
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m) {

float a = b[k];
for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {

a += x[d][n+u][m+v] * w[k][d][u][v];
}
y[k][n][m] = a;

}
Store Level = 3

Init Level = 3

Perform outermost loop
level on processor core.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 14

 Cluster has limited memory (~128 kB)
 DNN data sets are usually multiple GB
 Tile input data into chunks that fit in 128 kB
 Use double buffering to hide latency while

NTX are processing current chunk
 Write back last iteration’s result
 Preload next iteration’s input data

 NTX run independently; processor free to
orchestrate data movement with the DMA

 Consider the tiled DNN convolution:

Programming Model Tiling

for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
// load tile inputs x, w, b with DMA
for (int k = 0; k < K; ++k)
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m) {
float a = b[k];
for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {
a += x[d][n+u][m+v] * w[k][d][u][v];

}
y[k][n][m] = a;

}
// store tile outputs y

}

Iterate over tiles of the
input data

Iterate over pixels in
the current tile

Perform
convolution
for current
pixel

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 15

C++ API Example

for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
load_tile(x, w, b);
for (int k = 0; k < K; ++k)
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m) {
float a = b[k];
for (int d = 0; d < D; ++d)
for (int u = 0; u < U; ++u)
for (int v = 0; v < V; ++v) {
a += x[d][n+u][m+v] * w[k][d][u][v];

}
y[k][n][m] = a;

}
store_tile(y);

}

Tiled convolution:

ntx_api ntx;
dma_api dma;
ntx.cfg_loops(5, {N,M,D,U,V}, ...);
for (int tk = 0; tk < TK; ++tk)
for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {
dma.start_read(x, w, b);
for (int k = 0; k < K; ++k) {
ntx.cfg_ptrs(x, &w[k], &y[k]);
dma.wait_read();
ntx.issue_cmd(ntx_api::MAC);

}
ntx.wait_ready();
dma.start_write(y);
swap_buffers();

}

Tiled convolution with NTX:

Configure loop bounds
once for the entire
kernel

Start reading input data

Point NTX at the
address of the input
data

Wait for the input data
to be loaded (overlaps
with previous NTX
computation)

Start next computation

Wait for computation to complete

Start writing back output data

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 16

Execution Sample
 All 8 NTX perform the main computation
 DMA writes back results of last computation and reads inputs for next
 Processor core orchestrates operation, computes addresses, pads input data
 NTXs require no control once started
 DMA is capable of 2D transfers; core issues multiple small transfers for 3D/4D tensors

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 17

Stencil Examples
 Stencils map very well to NTX’s loops
 Process input/output in tiles; overlap data

movement and computation

 Example: Dense Stencil in 2D
 Similar to the convolution
 Multiply pixel’s neighbourhood with weights

 Example: Discrete Laplace Operator in 2D
 Stencil has a star shape, i.e. it’s sparse
 Decompose into smaller, dense computations
 Perform computation in “passes”

for (int tn = 0; n < TN; ++tn)
for (int tm = 0; m < TM; ++tm) {

dma.load(x, w);
ntx.fmac(y, x, w);
dma.store(y);

}

Dense Stencil in 2D:

for (int tn = 0; tn < TN; ++tn)
for (int tm = 0; tm < TM; ++tm) {

dma.load(x, w);
ntx.fmac(y, x, w[0], axis=0);
ntx.fmac(y, x, w[1], axis=1);
dma.store(y);

}

Discrete Laplace Operator in 2D:

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 18

 We have taped out NTX in Globalfoundries’
22FDX technology

 Chips are back and being measured as we
speak

 Paper presents post-layout estimates for a
single cluster

 NTX runs at up to 1.25 GHz
 Compute of 20 Gflop/s
 Bandwidth of 5 GB/s
 At 9.3 pJ/flop and using only 0.51 mm2

 Scale up by replicating cluster

Implementation in 22nm FD-SOI

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 19

Roofline

 NTX achieves high utilization of
available bandwidth and compute

 We investigate a range of different
kernels:

 Linear Algebra
 Mat-Mat product (GEMM)
 Mat-Vec product (GEMV)
 Vector sum (AXPY)

 Stencils
 Discrete Laplace Operator in 1D/2D/3D
 Diffusion

 Deep Learning

Very small problems harder to efficiently
parallelize across 8 NTXs; overhead
shows as distance from rooflines.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 20

Von Neumann Bottleneck

 NTX helps alleviate the von Neumann bottleneck
 No explicit load/store instructions
 No explicit address calculation instructions

 Simple example: Dot product over 1024 elements
 With single RV32IF:
 5122 instructions executed

 With single NTX (plus RV32I):
 10 instructions executed
 1024 idle cycles while NTX executes (can be used)

 NTX reduces instruction bandwidth by 512x
 Even more when using more nested loops

 NTX amortizes single instruction stream over 8 FPUs
 Data/Inst. bandwidth ratio of 16 (worst case, usually higher)

lp.setupi L0, 1024, 5
flw ft0, 0(a0)
flw ft1, 0(a1)
fmadd ft2, ft0, ft1, ft2
addi a0, a0, 4
addi a1, a1, 4
fsw ft2, 0(a2)

Single RV32IF Core:

Setup

Writeback

Hot Loop

Setup

Idle

sw a0, NTX_AGU0_PTR
sw a1, NTX_AGU1_PTR
sw a2, NTX_AGU2_PTR
li t1, 1024
sw t1, NTX_BOUND_L0
li t1, 4
sw t1, NTX_AGU0_S0
sw t1, NTX_AGU1_S0
li t1, NTX_MAC_CMD
sw t1, NTX_CMD
wfi

Single NTX:

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 21

Power Breakdown

 NTX dissipates significant fraction of power in
its FPU (more is better):
 31% of cluster
 14% of entire HMC
 Recall: GPU is around 4.8% [1]

 Compared to NVIDIA Volta GPU [2]:
 Register file in GPU holds registers and thread-

local data
 Each register read/write is an SRAM access
 Register and data accesses compete for SRAM

[1] S. Hong et al., “An integrated gpu power and performance model,” in ACM SIGARCH Computer Architecture News, 2010.
[2] Volta Architecture Whitepaper, NVIDIA

FMAC accu, [AGU0], [AGU1]
LDS R2, [R0]
LDS R3, [R1]
FFMA R4, R2, R3, R2

Volta Assembly NTX Pseudocode

2 mem. acc. (“[…]”)
8 reg. acc.

2 mem. acc. (“[…]”)
0 reg. acc.
(+ addr. calc for free)

= 10 SRAM hits total = 2 SRAM hits total

1 Volta SM 8 NTX cl.
64 FPUs 64 FPUs
256 kB RF
128 kB L0 Cache

512 kB TCDM

32-2048 threads 8 threads

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 22

 How much Gflop/s of compute do we get per
W of power?

 Comparison of NTX against GPU in similar
technology node

 22 nm: 2.5x more vs. Nvidia TitanX
 14 nm: 3.0x more vs. Nvidia Tesla P100

 A note on Nvidia V100:
 Tensor cores operate on float16
 Real float32 efficiency likely 30 Gflop/Ws
 12 nm NTX likely around 2x gain [1]

Results Energy Efficiency

© NVIDIA

[1] O. Abdelkader et al, "The Impact of FinFET Technology Scaling on Critical Path Performance under Process Variations," at ICEAC, 2015.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 23

 How much Gflop/s of compute do we get per
mm2 of silicon area?

 Comparison of NTX against GPU in similar
technology node

 22nm: 6.5x more vs. Nvidia K80
 14nm: 10.4x more vs. Nvidia 1080Ti

 GPU dies are huge (>500 mm2)
 NTX fits easily into HMC
 Silicon in HMC manufactured anyway, but is

unused; virtually zero additional cost

Results Deployed Silicon

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 24

Results Data Center

 Match an Nvidia DGX-1 with HMCs [1]
 Two Intel Xeon CPUs, eight Tesla P100
 3.2 kW total, 2.4 kW due to GPU
 84.8 Tflop/s of compute

 Scenario 1: Match 3.2 kW power envelope
 3.1x increase in compute (258.9 Tflop/s)
 129 HMCs, 128 NTX clusters each

 Scenario 2: Match 84.8 Tflop/s of compute
 2.1x power reduction (1.53 kW)
 43 HMCs, 128 NTX clusters each
 Energy bill: –$1808 per server and year

Match power with different HMC configs

Match compute with different HMC configs

[1] F. Schuiki et al, "Schuiki, Fabian, et al. "A scalable near-memory architecture for training deep neural networks on large in-memory datasets," in IEEE Transactions on Computers, 2019.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 25

Results Scaling to Multiple HMCs

 Arrange HMCs in a mesh
 Communication with neighbors via serial links
 We investigate the scaling behaviour of DNN

training over multiple HMCs
 For example 64 HMCs and batch sizes 8192:

 HMCs provide almost ideal speedup:
 62.8x speedup
 98% parallel efficiency

 HMCs lose little energy to communication:
 94.3% energy efficiency

[1] F. Schuiki et al, "Schuiki, Fabian, et al. "A scalable near-memory architecture for training deep neural networks on large in-memory datasets," in IEEE Transactions on Computers, 2019.

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 26

 Address Generator Extension
 NTX’s address generator likely applicable to more kernels
 FFTs, linear algebra decompositions/factorizations
 Searches? Sorting? Graphs?

 Transprecision Computing
 Save precious DRAM bandwidth
 Custom number formats
 Use float8, float16
 Logarithmic numbers?

 On-the-fly data type conversion in DMA

 Automated Mapping of Kernels
 Starting from Compute Graph, e.g. TensorFlow

Future Work

||Digital Circuits and Systems, Integrated Systems Laboratory, D-ITET Luca Benini 27 March 2019 27

