How HPC helps exploring electromagnetic near fields

Jens Förstner

Theoretical Electrical Engineering

Deutsche Forschungsgemeinschaft

DFG

Outline

 \bullet

- changes fields via MW eq. Maxwell equations material state e.m. fields MW $\rho, \vec{J}, \vec{P}, \vec{M}$ $\vec{E}, \vec{B}, \vec{D}, \vec{H}$ eq. changes material via forces some analytical solutions homogeneous media point-like sources challenges for wavelength-sized structures
- examples from the TET group

Maxwell equations

Starting point of this talk are the **macroscopic Maxwell equations**:

div $\vec{D}(\vec{r},t) = \rho(\vec{r},t)$ div $\vec{B}(\vec{r},t) = 0$ curl $\vec{E}(\vec{r},t) = -\partial_t \vec{B}(\vec{r},t)$ curl $\vec{H}(\vec{r},t) = \partial_t \vec{D}(\vec{r},t) + \vec{J}(\vec{r},t)$

Gauss's law

(Electric charges are the source of electro-static fields)

Gauss's law for magnetism (There are no free magnetic charges/monopoles)

Faraday's law of induction (changes in the magnetic flux ⇔ electric ring fields)

Ampere's law with Maxwell's addition (currents and changes in the electric flux density \Leftrightarrow magnetic ring fields)

$$\vec{E} = \text{electric field strength}$$

$$\vec{D} = \text{electric flux density}$$

$$\vec{P} = \text{macroscopic polarization}$$

$$\rho = \text{free electric charge density}$$

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{C^2}{Nm^2} \text{ vacuum permittivity}$$

- \vec{H} magnetic field strength
- \vec{B} magnetic flux density
- \vec{P} magnetic dipole density
 - free electric current density

$$u_0 = 4\pi 10^{-7} \frac{N}{A^2}$$

 $\partial_t \coloneqq \frac{d}{dt}$

vacuum permeability

- magnetism (earth, compass)
- binding force between electrons & nucleus => atoms
- binding between atoms => molecules and solids
- <1 kHz: electricity, LF electronics
- antennas, radation: radio, satellites, cell phones, radar
- metallic waveguides: TV, land-line communication, power transmission,
 HF electronics
- lasers, LEDs, optical fibers

- medical applications
- X-Ray scanning
- astronomy

Full range of effects are described by the same theory: Maxwell equations

However the material response depends strongly on the frequency.

Maxwell equations

Starting point of this talk are the **macroscopic Maxwell equations**:

div
$$\vec{D}(\vec{r}, t) = \rho(\vec{r}, t)$$

div $\vec{B}(\vec{r}, t) = 0$
curl $\vec{E}(\vec{r}, t) = -\partial_t \vec{B}(\vec{r}, t)$
curl $\vec{H}(\vec{r}, t) = \partial_t \vec{D}(\vec{r}, t) + \vec{J}(\vec{r}, t)$

Gauss's law

(Electric charges are the source of electro-static fields)

Gauss's law for magnetism (There are no free magnetic charges/monopoles)

Faraday's law of induction (changes in the magnetic flux ⇔ electric ring fields)

Ampere's law with Maxwell's addition (currents and changes in the electric flux density \Leftrightarrow magnetic ring fields)

Together with the **constitutive/material relations**:

- \vec{E} electric field strength
- \vec{D} electric flux density
- \vec{P} macroscopic polarization
- ho free electric charge density

$$\varepsilon_0 = 8.85 \cdot 10^{-12} rac{C^2}{Nm^2}$$
 vacuum permittivity

- \vec{H} magnetic field strength
- \vec{B} magnetic flux density
 - magnetic dipole density
 - free electric current density

$$u_0 = 4\pi 10^{-7} \frac{N}{A^2}$$

 \vec{P}

 $\partial_t := \frac{d}{dt}$

vacuum permeability

Material models

 $\rho, \vec{J}, \vec{P}, \vec{M}$

eq.

 $\vec{E}, \vec{B}, \vec{D}, \vec{H}$

⇒ The material quantities are functionals of the fields, i.e. they may depend on the fields at all other points in space in time.

changes material via forces

 \Rightarrow complex spatio-temporal coupled dynamics!

Material models

With a few assumptions (linearity, locality, causality, achirality, time invariance), the material relation for \vec{D} can be written in frequency space as simple proportionality:

$$\vec{D}(\vec{r},\omega)=\vec{\vec{\varepsilon}}(\vec{r},\omega)\vec{E}(\vec{r},\omega)$$

In non-conducting dielectric materials the restoring force on bound charges often scales mostly linear with the external force (Hooke's law, linear spring). This leads to a (damped) harmonic oscillator called Lorentz model.

In solids there are many types of oscillations (electronic, atomic, dipolar, ionic) of different frequencies which superpose, i.e. sum up:

real part $\varepsilon' \rightarrow$ dispersion imaginary part $\varepsilon'' \rightarrow$ damping

The wave equation

Assuming a spatial homogeneous material, i.e. spatially constant $\tilde{\varepsilon} \& \mu$, and no free charges one can derive the wave equation, in frequency domain called **Helmholtz equation**:

 $\Delta \vec{E}(\vec{r},\omega) + \omega^{2} \tilde{\varepsilon}(\omega) \mu(\omega) \vec{E}(\vec{r},\omega) = j \omega \mu(\omega) \vec{J}_{e}(\vec{r},\omega)$

One set of solutions are **plane waves** (for $J_e = 0$): $e^{j\omega t - j\vec{k}\cdot\vec{r}}$

The (circular) frequency ω and wave number k are linked via a **dispersion relation:** $k^2 = \omega^2 \tilde{\varepsilon}(\omega) \mu(\omega)$.

The real part $\beta = \text{Re } k$ determines the wavelength $\lambda = 2\pi/\beta$ (i.e. spatial period), the speed of light in a medium $v_{ph} = \omega/\beta$, and it's derivative the group velocity $v_{gr} = \partial \omega/\partial \beta$

The imaginary part $\alpha = \text{Im } k$ determines damping effects.

Superpositions lead to more complex field patterns (interference).

Interfaces

Things get interesting at interfaces between homogeneous media:

Refraction: $\varepsilon_1 < \varepsilon_2 \Rightarrow$ towards normal

 $\varepsilon_1 > \varepsilon_2 \Rightarrow$ away from normal

https://en.wikipedia.org/wiki/Total_internal_re flection#/media/File:Total_internal_reflection_ of_Chelonia_mydas.jpg

For $\varepsilon_1 > \varepsilon_2$ total reflection can occur above a critical angle: (100% reflection, evanescent decaying field in media 2)

https://www.flickr.com/photos/jtbss/9393445794

This is the basis for wave guiding in dielectrics \Rightarrow fibre optics, integrated photonics

Dispersion

The material parameter $\varepsilon(\omega)$ depends on frequency

 \Rightarrow strength of refraction & speed of light differs for spectral components

examples:

https://rivel.com/the-prism-a-full-spectrum-of-color-on-governance-issues/

http://pixxel-blog.de/was-ist-eigentlich-chromatische-aberration/

Tiny particles

Homogeneous media & simple boundaries \Rightarrow analytical solutions \Rightarrow no need for HPC. How about tiny particles (much smaller than the wavelength), look at point-like emitter:

Raleigh scattering

This also explains how e.m. fields scatter off tiny particles (Rayleigh scattering):

Rayleigh Streuung

(3) scattering in "milk opal"

https://upload.wikimedia.org/wikipedia/common s/0/0b/Why_is_the_sky_blue.jpg

losses in fibres

Tiny particles

One tiny particle \Rightarrow no need for HPC.

- How about the mesoscopic e.m. "Mie" regime, i.e. particle size \approx wavelength?
- Only few analytical solutions for high symmetry:

Spherical: Mie solutions, spherical harmonic functions

Planar symmetries

Cylindrical

Everything more complex \Rightarrow numerical simulation

Simulation of the Second Harmonic Generation (SHG) in arrays of gold split ring resonators.

Question for the theory: Where and how is SHG signal generated? • Surface? • Bulk? Substrate? • Depositions?

Challenge: strong variation of fields

Electromagnetic fields are strongly enhanced and vary on extremely short scales

-> challenges for theory:

- Strong near field enhancement and extreme field variation,
- Complex optical response of materials (dielectrics and metals): nonlinearites, nonlocality, anisotropy, decoherence,
- Nontrivial short- and long distance coupling.

Requires:

- Advanced nonlinear/nonlocal/anisotropic material models,
- Adaptive mesh time domain PDE solver,
- Efficient parallel implementations.

 \Rightarrow All tested available tools failed

Our numerical method of choice

 $\Delta \mathbf{E}, \Delta \mathbf{H}$

The field components for \vec{E} and \vec{H} are expanded *locally* in each cell. There Maxwell and material equations are solved: $\frac{\partial \mathbf{E}^{k}}{\partial t} = \frac{1}{\epsilon^{k}} \left[\mathbf{D}^{k} \times \mathbf{H}^{k} + (\mathcal{M}^{k})^{-1} \mathcal{F}^{k} [\alpha (\Delta \mathbf{E} - \hat{n}(\hat{n} \cdot \Delta \mathbf{E})) + Z^{+} \hat{n} \times \Delta \mathbf{H}] / \overline{Z} \right]$

Then exchange of e.m flux.

Hesthaven, Warburton, Springer Book (2007) Busch et al, Laser & Photonics Reviews (2011)

- The Discontinuous Galerkin Time Domain (DGTD) method:
- Unstructured, adaptive mesh -> multiscale, multiphysics,
- ☺ full geometrical flexibility (substrate, materials, etc)
- ☺ direct incorporation of nonlinear material equations in TD,
- ☺ stability can be proven, even for some nonlinearities,
- \odot excellent parallel scaling, \checkmark HPC!
- complex method, effort of implementation,
- High cost of mesh generation.

Cooperations with C.Plessl/PC2, BMBF project HighPerMeshes

Research topics in my group

Higher Harmonic Generation

Simulated emission using symmetrized grids:

- Advection and charge shift counteracting, still larger than $\vec{J} \times \vec{B}$ nonlinearity.
- Third harmonic generation (THG) in excitation direction

hybrid plasmonic/dielectric nanoantennas

related structure, single particle ("nanoantenna")

experiment:

Model roughness, near fields at rough surface:

This explained the experimentally observed strong SHG signal.

[Light: Science & Applications 2016]

Application of TD-DG to dust particles

Scattering of microwaves at larger particles ($r \ll \lambda$), e/g. at interplanetary dust and atmospheric ice particles:

Large particles and rough surfaces are numerically very demanding → "Discontinuous Galerkin method" (lecture)

Application of TD-DG to dust particles

main result: size important, shape not so much

good agreement, differences for imaginary part, roughness only has some influence, but small

Biological photonic crystals

pronounced reflection band (with rotation of the circular polarization by multiple interference) \Rightarrow polarization filter

Biomimetic (i.e. related to nature, but technologically easier to realize) structure shows same behaviour

we also investigate artificial photonic crystals:

Cooperation with Xia Wu (UPB NW-C)

Bi-chiral photonic crystals

Triple interveaved helix array (H. Giessen/Stuttgart):

HF circuits and antenna simulations

Simulation of a bluetooth antenna in a car radio/infotainment system

- Consider electronics and housing
- ⇒ optimize radiation and EMC (Electromagnetic compatibility)

with Continental Automotive

EMC simulation of SEPIC (DC-DC)

Combination of Spice+Maxwell (with CST Studio)

- Verification of simulation method by measuring several designs
- Reduction of interference to fulfill EMC requirements

Thanks to

Christian Plessl and his team for acquiring and maintaining the PC2 systems, and cooperation/support on HPC programming

funding:

Deutsche Forschungsgemeinschaft DFG

And YOU for your attention!

